Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(32): 17807-17813, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32618981

RESUMO

We report the triplet-triplet annihilation (TTA) upconversion (UC) through triplet energy transfer (TET) from a sensitiser fixed on a solid surface to free emitters dissolved in solution. A carboxylic-acid derivative of Pt-porphyrin was used as the sensitiser fixed on an amino-treated surface of continuous nanoporous glass without aggregation. UC emission was observed under photoexcitation of 532 nm for porphyrin-fixed glass immersed in an emitter solution of 9,10-diphenylanthracene (DPA), showing that TET occurs through the solid-liquid interface. The dynamics of TET was analysed through both phosphorescence decay of the sensitiser and UC emission rise from the emitter. Two TET components with different rate constants were found, slower than diffusion-controlled reactions in solution by 1-2 orders of magnitude. Nevertheless, the solid surface TET rates were fast enough to obtain a high quantum yield over the solid-liquid interface. By melting DPA and soaking it into sensitiser-fixed porous glass, we fabricated an all-solid system enabling TTA-UC through the bulk interface.

2.
ACS Appl Mater Interfaces ; 11(23): 20812-20819, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31145592

RESUMO

Herein, triplet-triplet annihilation upconversion (TTA-UC) from near-infrared (NIR, 785 nm) to visible (yellow, centered at 570 nm) regions has been demonstrated in the binary solid of condensed chromophores. Microparticles of the binary solid comprising rubrene as a matrix (emitter) and π-extended Pd-porphyrin as a dopant (sensitizer) in a mole ratio of 1000:1 were obtained by solution casting. Excitation intensity dependence and quantum yield (QY) of the upconverted emission were characterized for individual particles under a microscope and revealed a low threshold intensity (∼100 mW/cm2) as compared to the solution and moderate UC-QY (∼0.5%) in the NIR range. The factors contributing to the UC-QY were investigated by time-resolved and steady-state spectroscopies. It was found that the intersystem crossing of the sensitizer, triplet energy transfer, and TTA occurred efficiently in the binary solid, and the fluorescence QY of the emitter governed the UC-QY.

3.
Photochem Photobiol Sci ; 17(5): 622-627, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29697105

RESUMO

The room-temperature phosphorescence chromophore, Pt(ii) coproporphyrin I (PtCP), was fixed on the surface of a 3D-network of nanoscale pores of porous glass through ion-exchange reaction. The absorption and phosphorescence spectra indicated that PtCP can be loaded while maintaining monomeric dispersion at concentrations well beyond solubility limits of PtCP in solution. The phosphorescence quantum yield of PtCP fixed on the surface was also found to have double the enhancement of solution. The extended lifetime of phosphorescence of PtCP bonded on the surface compared to that in solution clearly indicated that suppression of nonradiative deactivation plays a key role in high quantum yield and long triplet lifetime. This hybridization with nano-porous glass provides opportunities for various potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...