Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(15): 8406-8409, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33417288

RESUMO

Mechanochromic elastomers that exhibit force-induced cross-linking reactions in the bulk state are introduced. The synthesis of segmented polyurethanes (SPUs) that contain difluorenylsuccinonitrile (DFSN) moieties in the main chain and methacryloyl groups in the side chains was carried out. DFSN was selected as the mechanophore because it dissociates under mechanical stimuli to form pink cyanofluorene (CF) radicals, which can also initiate the radical polymerization of methacrylate monomers. The obtained elastomers generated CF radicals and changed color by compression or extension; they also became insoluble due to the mechanically induced cross-linking reactions. Additionally, an SPU containing diphenylmethane units also exhibited highly sensitive mechanofluorescence. To the best of our knowledge, this is the first report to demonstrate damage detection ability and changes in the mechanical properties of bulk elastomers induced by simple compression or extension.

2.
ACS Macro Lett ; 9(8): 1108-1113, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35653216

RESUMO

A difluorenylsuccinonitrile-(DFSN)-based linker, whose central C-C bond is readily cleaved under mechanical stress to generate a relatively stable pink radical species, was introduced into polymer networks. DFSN-based cross-linked polymers exhibit improved mechanical properties as compared to those of the corresponding covalently cross-linked polymers owing to the energy dissipation induced by cleavage of the central DFSN bond. The toughening mechanism of DFSN-based elastomers is qualitatively visualized by the intensity of the pink color and can be quantitatively characterized by electron paramagnetic resonance. These results demonstrate that the extent of DFSN cleavage is the main factor improving the mechanical properties of the polymer networks.

3.
ACS Macro Lett ; 7(11): 1359-1363, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35651243

RESUMO

Mechanochromism, a color change induced by mechanical force, has attracted much attention in materials science, as it can be used to create stress- and damage-detecting sensors. In particular, radical-type mechanochromic molecules (mechanochromophores), which produce colored radicals upon exposure to mechanical force, enable the qualitative visualization of mechanical stress and the quantitative evaluation of the generated radical species by electron paramagnetic resonance spectroscopy. However, the sensitivity of radical-type mechanochromophores to thermal stimuli limits their range of applications. Herein, we report the radical-type mechanochromophore difluorenylsuccinonitrile (DFSN), which can be used to synthesize mechanochromic polymers via living radical polymerization techniques, as its central carbon-carbon bond exhibits high thermal stability. The obtained DFSN-centered polymers show mechanochromism and desirably high thermal resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...