Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Exp Med ; 215(2): 501-519, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29339448

RESUMO

M cells are located in the follicle-associated epithelium (FAE) that covers Peyer's patches (PPs) and are responsible for the uptake of intestinal antigens. The differentiation of M cells is initiated by receptor activator of NF-κB. However, the intracellular pathways involved in M cell differentiation are still elusive. In this study, we demonstrate that the NF-κB pathway activated by RANK is essential for M cell differentiation using in vitro organoid culture. Overexpression of NF-κB transcription factors enhances the expression of M cell-associated molecules but is not sufficient to complete M cell differentiation. Furthermore, we evaluated the requirement for tumor necrosis factor receptor-associated factor 6 (TRAF6). Conditional deletion of TRAF6 in the intestinal epithelium causes a complete loss of M cells in PPs, resulting in impaired antigen uptake into PPs. In addition, the expression of FAE-associated genes is almost silenced in TRAF6-deficient mice. This study thus demonstrates the crucial role of TRAF6-mediated NF-κB signaling in the development of M cells and FAE.


Assuntos
Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/citologia , Organoides/imunologia , Organoides/metabolismo , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/deficiência , Fator 6 Associado a Receptor de TNF/genética
2.
J Exp Med ; 214(6): 1607-1618, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28512157

RESUMO

Interleukin-22 (IL-22) acts protectively and harmfully on intestinal tissue depending on the situation; therefore, IL-22 signaling needs to be tightly regulated. IL-22 binding protein (IL-22BP) binds IL-22 to inhibit IL-22 signaling. It is expressed in intestinal and lymphoid tissues, although its precise distribution and roles have remained unclear. In this study, we show that IL-22BP is highly expressed by CD11b+CD8α- dendritic cells in the subepithelial dome region of Peyer's patches (PPs). We found that IL-22BP blocks IL-22 signaling in the follicle-associated epithelium (FAE) covering PPs, indicating that IL-22BP plays a role in regulating the characteristics of the FAE. As expected, FAE of IL-22BP-deficient (Il22ra2-/-) mice exhibited altered properties such as the enhanced expression of mucus and antimicrobial proteins as well as prominent fucosylation, which are normally suppressed in FAE. Additionally, Il22ra2-/- mice exhibited the decreased uptake of bacterial antigens into PPs without affecting M cell function. Our present study thus demonstrates that IL-22BP promotes bacterial uptake into PPs by influencing FAE gene expression and function.


Assuntos
Antígenos de Bactérias/imunologia , Epitélio/imunologia , Nódulos Linfáticos Agregados/imunologia , Receptores de Interleucina/metabolismo , Animais , Diferenciação Celular , Contagem de Colônia Microbiana , Células Dendríticas/imunologia , Endocitose , Células Epiteliais/imunologia , Interleucinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais , Interleucina 22
3.
PLoS One ; 11(3): e0150379, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930511

RESUMO

M cells in the follicle-associated epithelium (FAE) of Peyer's patches (PPs) serve as a main portal for external antigens and function as a sentinel in mucosal immune responses. The scarcity of these cells has hampered identification of M cell-specific molecules. Recent efforts have begun to provide insight into antigen transcytosis and differentiation of M cells; however, the molecular mechanisms underlying these processes are not fully elucidated. Small non-coding RNAs including microRNA (miRNA) have been reported to regulate gene expression and control various biological processes such as cellular differentiation and function. To evaluate the expression of miRNAs in FAE, including M cells, we previously performed microarray analysis comparing intestinal villous epithelium (VE) and PP FAE. Here we confirmed FAE specific miRNA expression levels by quantitative PCR. To gain insight into miRNA function, we generated mice with intestinal epithelial cell-specific deletion of Dicer1 (DicerΔIEC) and analyzed intestinal phenotypes, including M-cell differentiation, morphology and function. DicerΔIEC mice had a marked decrease in M cells compared to control floxed Dicer mice, suggesting an essential role of miRNAs in maturation of these cells. Furthermore, transmission electron microscopic analysis revealed that depletion of miRNA caused the loss of endosomal structures in M cells. In addition, antigen uptake by M cells was impaired in DicerΔIEC mice. These results suggest that miRNAs play a significant role in M cell differentiation and help secure mucosal immune homeostasis.


Assuntos
Homeostase/imunologia , Imunidade nas Mucosas/imunologia , Mucosa Intestinal/imunologia , MicroRNAs/imunologia , Animais , Diferenciação Celular/imunologia , Células Epiteliais/imunologia , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transcitose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...