Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Res ; 110: 57-65, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36682228

RESUMO

High-fructose corn syrup (HFCS) is consumed worldwide. However, it has been demonstrated that an increased intake of sweetened beverages, including those sweetened using fructose, is associated with the development of childhood obesity. It is unknown why the negative effects of fructose are stronger in young persons than in elderly individuals. In recent years, mitochondria have been identified as 1 of the targets of the negative effects of fructose; they possess their own genome called mitochondrial DNA (mtDNA), which encodes genes involved in metabolic functions. We hypothesized that HFCS intake affects mtDNA in the livers of rats, and that the intensity of these effects is age-dependent. The experimental period was divided into 3 parts: childhood and adolescence (postnatal day [PD] 21-60), young adulthood (PD61-100), and adulthood (PD101-140). Rats in the different age groups were assigned to receive either water (control group [CONT]) or a 20% HFCS solution (HFCS). The hepatic mtDNA copy number of the HFCS group was higher than that of the CONT group in childhood and adolescence. In addition, the mtDNA methylation level was increased in the HFCS group in the same experimental period. No significant differences were observed between the CONT and HFCS groups during the other experimental periods. We demonstrated that HFCS has the strongest effect on mtDNA during childhood and adolescence, suggesting a need to analyze the HFCS intake of young people.


Assuntos
Xarope de Milho Rico em Frutose , Obesidade Infantil , Ratos , Animais , Xarope de Milho Rico em Frutose/efeitos adversos , Zea mays/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Metilação , Variações do Número de Cópias de DNA , Obesidade Infantil/metabolismo , Fígado/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , Mitocôndrias/metabolismo
2.
Exp Clin Endocrinol Diabetes ; 130(12): 814-820, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36368682

RESUMO

The consumption of high-fructose corn syrup (HFCS) has been increasing in recent decades, especially among children. Some reports suggest that children and adolescents are more sensitive to the adverse effects of fructose intake than adults. However, the underlying mechanism of the difference in vulnerability between adolescence and adulthood have not yet been elucidated. In this study, we attempted to elucidate the different effects of HFCS intake at different growth stages in rats: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD60-100), and adulthood (PD100-140). Since alterations in hepatic glucocorticoid (GC) metabolism can cause diseases including insulin resistance, we focused on GC metabolizing enzymes such as 11 beta-hydroxysteroid dehydrogenase 1 and 2 (Hsd11b1 and Hsd11b2) and steroid 5 alpha-reductase 1 (Srd5a1). Western blotting showed an increase in Hsd11b1 expression and a decrease in Hsd11b2 expression in childhood and adolescence but not in adulthood. We also observed changes in Hsd11b1 and Hsd11b2 activities only in childhood and adolescence, consistent with the results of mRNA and protein expression analysis. The effect of high-fructose intake with regards to GC metabolism may therefore vary with developmental stage. This study provides insight into the adverse effects of fructose on GC metabolism in children in the context of increasing rates of HFCS consumption.


Assuntos
Xarope de Milho Rico em Frutose , Ratos , Animais , Xarope de Milho Rico em Frutose/efeitos adversos , Glucocorticoides , Zea mays , Metabolismo dos Lipídeos , Frutose/efeitos adversos
3.
PLoS One ; 17(6): e0270144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35714129

RESUMO

Consumption of fructose-containing beverages such as high-fructose corn syrup (HFCS) is increasing, raising concerns about the negative effects of excessive fructose intake. A recent report indicated that excess HFCS intake impairs hippocampal function. In this study, we focused on neurotrophic factors (NFs) in the hippocampus from the viewpoint of epigenetics to clarify the adverse effects of fructose. We analyzed the effects of HFCS intake on hippocampal function in three age categories: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD60-100), and late adulthood (PD100-140). For the experiments, male Sprague-Dawley rats were divided into three age categories, the control group was received distilled water and the HFCS group was received 20% HFCS solution for 40 days in each period. We analyzed mRNA and protein levels for qPCR and western blotting, respectively, of a hippocampal NF, brain-derived neurotrophic factor (Bdnf). HFCS consumption reduced hippocampal Bdnf mRNA and protein expressions in childhood and adolescence. Moreover, pyrosequencing assays revealed increased DNA methylation at the Bdnf promoter in childhood and adolescence. This Bdnf levels reduction may be due to hypermethylation of the promoter regions. It should be noted that this phenomenon was observed only in childhood and adolescence fructose consumption. Our results indicate that the sensitivity of the hippocampus to fructose may vary with age. This study provides insight into the adverse effects of excessive HFCS consumption on the hippocampus in children.


Assuntos
Xarope de Milho Rico em Frutose , Adulto , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metilação de DNA , Frutose/efeitos adversos , Frutose/metabolismo , Xarope de Milho Rico em Frutose/efeitos adversos , Hipocampo/metabolismo , Humanos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Adulto Jovem , Zea mays/metabolismo
4.
Life Sci ; 301: 120638, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588866

RESUMO

AIMS: This study aimed to analyze differences in sensitivity to hepatic lipid metabolism at different ages, through DNA methylation, using an experimental rat model of high-fructose corn syrup (HFCS) intake. MAIN METHODS: The experimental was divided into three periods: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD61-100), and adulthood (PD101-140). Rats in the different age groups were assigned to receive either water (C: control group) or 20% HFCS solution (H: HFCS-fed group). We measured hepatic mRNA levels of peroxisome proliferator-activated receptor alpha (Ppara), carnitine palmitoyltransferase 1A (Cpt1a), fatty acid synthase (Fasn), and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (Pgc1a) using real-time PCR. Additionally, we examined the DNA methylation levels of Ppara, Cpt1a, Fasn, and Pgc1a using pyrosequencing. KEY FINDINGS: Gene expressions of Cpt1a and Ppara in childhood and adolescence were significantly lower in the H group than in the C group. Conversely, Fasn and Pgc1a expressions were significantly higher in the H group than in the C group. Additionally, there was hypermethylation of Cpt1a and Ppara and hypomethylation of Fasn and Pgc1a in the H groups of childhood and adolescence. However, only one gene expression and methylation change was observed in young adulthood and adulthood groups. We found that HFCS intake in rats had stronger lipid metabolic effects in childhood and adolescence than in other generations, and that its mechanism involved epigenetic regulation. SIGNIFICANCE: We anticipate that these research findings will be a breakthrough for elucidating the varying effects of growth stage in the future.


Assuntos
Fatores Etários , Metilação de DNA , Xarope de Milho Rico em Frutose , Fígado , Animais , Epigênese Genética , Frutose/farmacologia , Xarope de Milho Rico em Frutose/efeitos adversos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ratos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...