Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 5(12): e370, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34988354

RESUMO

The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)-type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9-mediated gene editing and analyzed the responses to DNA-damaging treatments. The double-knockout (KO) sog1a sog1b plants showed resistance to γ-rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild-type (WT) and KO plants with γ-rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle-related genes were upregulated after γ-irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant-specific DDR systems had been established before the emergence of vascular plants.

3.
Front Plant Sci ; 10: 1208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649692

RESUMO

Plant genomes sustain various forms of DNA damage that stall replication forks. Translesion synthesis (TLS) is one of the pathways to overcome stalled replication in which specific polymerases (TLS polymerase) perform bypass synthesis across DNA damage. This article gives a brief overview of plant TLS polymerases. In Arabidopsis, DNA polymerase (Pol) ζ, η, κ, θ, and λ and Reversionless1 (Rev1) are shown to be involved in the TLS. For example, AtPolη bypasses ultraviolet (UV)-induced cyclobutane pyrimidine dimers in vitro. Disruption of AtPolζ or AtPolη increases root stem cell death after UV irradiation. These results suggest that AtPolζ and ATPolη bypass UV-induced damage, prevent replication arrest, and allow damaged cells to survive and grow. In general, TLS polymerases have low fidelity and often induce mutations. Accordingly, disruption of AtPolζ or AtRev1 reduces somatic mutation frequency, whereas disruption of AtPolη elevates it, suggesting that plants have both mutagenic and less mutagenic TLS activities. The stalled replication fork can be resolved by a strand switch pathway involving a DNA helicase Rad5. Disruption of both AtPolζ and AtRAD5a shows synergistic or additive effects in the sensitivity to DNA-damaging agents. Moreover, AtPolζ or AtRev1 disruption elevates homologous recombination frequencies in somatic tissues. These results suggest that the Rad5-dependent pathway and TLS are parallel. Plants grown in the presence of heat shock protein 90 (HSP90) inhibitor showed lower mutation frequencies, suggesting that HSP90 regulates mutagenic TLS in plants. Hypersensitivities of TLS-deficient plants to γ-ray and/or crosslink damage suggest that plant TLS polymerases have multiple roles, as reported in other organisms.

4.
Genes (Basel) ; 9(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29414843

RESUMO

The purpose of this study was to investigate whether the moss Physcomitrella patens cells are more resistant to ionizing radiation than animal cells. Protoplasts derived from P. patens protonemata were irradiated with γ-rays of 50-1000 gray (Gy). Clonogenicity of the protoplasts decreased in a γ-ray dose-dependent manner. The dose that decreased clonogenicity by half (LD50) was 277 Gy, which indicated that the moss protoplasts were 200-times more radioresistant than human cells. To investigate the mechanism of radioresistance in P. patens, we irradiated protoplasts on ice and initial double-strand break (DSB) yields were measured using the pulsed-field gel electrophoresis assay. Induced DSBs linearly increased dependent on the γ-ray dose and the DSB yield per Gb DNA per Gy was 2.2. The DSB yield in P. patens was half to one-third of those reported in mammals and yeasts, indicating that DSBs are difficult to induce in P. patens. The DSB yield per cell per LD50 dose in P. patens was 311, which is three- to six-times higher than those in mammals and yeasts, implying that P. patens is hyperresistant to DSBs. Physcomitrella patens is indicated to possess unique mechanisms to inhibit DSB induction and provide resistance to high numbers of DSBs.

5.
J Radiat Res ; 58(6): 772-781, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637346

RESUMO

Ion beams have been used as an effective tool in mutation breeding for the creation of crops with novel characteristics. Recent analyses have revealed that ion beams induce large chromosomal alterations, in addition to small mutations comprising base changes or frameshifts. In an effort to understand the potential capability of ion beams, we analyzed an Arabidopsis mutant possessing an abnormal genetic trait. The Arabidopsis mutant uvh3-2 is hypersensitive to UVB radiation when photoreactivation is unavailable. uvh3-2 plants grow normally and produce seeds by self-pollination. SSLP and CAPS analyses of F2 plants showed abnormal recombination frequency on chromosomes 2 and 3. PCR-based analysis and sequencing revealed that one-third of chromosome 3 was translocated to chromosome 2 in uvh3-2. FISH analysis using a 180 bp centromeric repeat and 45S ribosomal DNA (rDNA) as probes showed that the 45S rDNA signal was positioned away from that of the 180 bp centromeric repeat in uvh3-2, suggesting the insertion of a large chromosome fragment into the chromosome with 45S rDNA clusters. F1 plants derived from a cross between uvh3-2 and wild-type showed reduced fertility. PCR-based analysis of F2 plants suggested that reproductive cells carrying normal chromosome 2 and uvh3-2-derived chromosome 3 are unable to survive and therefore produce zygote. These results showed that ion beams could induce marked genomic alterations, and could possibly lead to the generation of novel plant species and crop strains.


Assuntos
Arabidopsis/genética , Aberrações Cromossômicas , Cromossomos de Plantas/genética , Mutação/genética , Arabidopsis/efeitos da radiação , Pareamento de Bases/genética , Segregação de Cromossomos/efeitos da radiação , Cruzamentos Genéticos , DNA Ribossômico/genética , Fertilidade/genética , Fertilidade/efeitos da radiação , Íons , Reação em Cadeia da Polimerase , Recombinação Genética/genética , Raios Ultravioleta
7.
J Radiat Res ; 54(6): 1050-6, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23728320

RESUMO

To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV (12)C(6+)), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV (12)C(6+). Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV (12)C(6+) than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV (12)C(6+), however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells.


Assuntos
Arabidopsis/genética , Arabidopsis/efeitos da radiação , Dano ao DNA/genética , Íons Pesados , Mutação/genética , Mutação/efeitos da radiação , Plântula/genética , Plântula/efeitos da radiação , Carbono , Relação Dose-Resposta à Radiação , Proteínas de Escherichia coli , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/efeitos da radiação , Doses de Radiação , Proteína S9 Ribossômica , Raios X
8.
J Radiat Res ; 54(4): 637-48, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23381954

RESUMO

UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.


Assuntos
Carbono/química , Íons Pesados , Mutação , Oryza/genética , Oryza/efeitos da radiação , Raios Ultravioleta , Alelos , Sequência de Aminoácidos , Cromossomos/efeitos da radiação , Cromossomos Artificiais Bacterianos , Hibridização Genômica Comparativa , Reparo do DNA , Biblioteca Gênica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas , Dímeros de Pirimidina/química , Interferência de RNA , Homologia de Sequência de Aminoácidos
9.
Plant Signal Behav ; 6(5): 728-31, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21455019

RESUMO

Although ionizing radiation has been employed as a mutagenic agent in plants, the molecular mechanism(s) of the mutagenesis is poorly understood. AtPolζ, AtRev1 and AtPolη are Arabidopsis translesion synthesis (TLS)-type polymerases involved in UV-induced mutagenesis. To investigate the role of TLS-type DNA polymerases in radiation-induced mutagenesis, we analyzed the mutation frequency in AtPolζ-, AtRev1- or AtPolη-knockout plants rev3-1, rev1-1 and polh-1, respectively. The change in mutation frequency in rev3-1 was negligible, whereas that in rev1-1 decreased markedly and that in polh-1 increased slightly compared to wild-type. Abasic (apurinic/apyrimidinic; AP) sites, induced by radiation or generated during DNA repair processes, can pair with any kind of nucleotide on the opposite strand. 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG), induced by radiation following formation of reactive oxygen species, can pair with cytosine or adenine. Therefore, AtRev1 possibly inserts dC opposite an AP site or 8-oxo-dG, which results in G to T transversions.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , DNA Polimerase Dirigida por DNA/metabolismo , Raios gama , Mutagênese/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Modelos Biológicos , Mutação/genética , Nucleotidiltransferases/metabolismo
10.
Plant Physiol ; 155(1): 414-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21030509

RESUMO

Translesion synthesis (TLS) is a DNA damage tolerance mechanism in which DNA lesions are bypassed by specific polymerases. To investigate the role of TLS activities in ultraviolet light-induced somatic mutations, we analyzed Arabidopsis (Arabidopsis thaliana) disruptants of AtREV3, AtREV1, and/or AtPOLH genes that encode TLS-type polymerases. The mutation frequency in rev3-1 or rev1-1 mutants decreased compared with that in the wild type, suggesting that AtPolζ and AtRev1 perform mutagenic bypass events, whereas the mutation frequency in the polh-1 mutant increased, suggesting that AtPolη performs nonmutagenic bypass events with respect to ultraviolet light-induced lesions. The rev3-1 rev1-1 double mutant showed almost the same mutation frequency as the rev1-1 single mutant. The increased mutation frequency found in polh-1 was completely suppressed in the rev3-1 polh-1 double mutant, indicating that AtPolζ is responsible for the increased mutations found in polh-1. In summary, these results suggest that AtPolζ and AtRev1 are involved in the same (error-prone) TLS pathway that is independent from the other (error-free) TLS pathway mediated by AtPolη.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese/efeitos da radiação , Nucleotidiltransferases/metabolismo , Raios Ultravioleta , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Códon sem Sentido/genética , Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , Modelos Biológicos , Mutação/genética , Nucleotidiltransferases/genética
11.
Plant J ; 60(3): 509-17, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19619159

RESUMO

To investigate UVB DNA damage response in higher plants, we used a genetic screen to isolate Arabidopsis thaliana mutants that are hypersensitive to UVB irradiation, and isolated a UVB-sensitive mutant, termed suv2 (for sensitive to UV 2) that also displayed hypersensitivity to gamma-radiation and hydroxyurea. This phenotype is reminiscent of the Arabidopsis DNA damage-response mutant atr. The suv2 mutation was mapped to the bottom of chromosome 5, and contains an insertion in an unknown gene annotated as MRA19.1. RT-PCR analysis with specific primers to MRA19.1 detected a transcript consisting of 12 exons. The transcript is predicted to encode a 646 amino acid protein that contains a coiled-coil domain and two instances of predicted PIKK target sequences within the N-terminal region. Fusion proteins consisting of the predicted MRA19.1 and DNA-binding or activation domain of yeast transcription factor GAL4 interacted with each other in a yeast two-hybrid system, suggesting that the proteins form a homodimer. Expression of CYCB1;1:GUS gene, which encodes a labile cyclin:GUS fusion protein to monitor mitotic activity by GUS activity, was weaker in the suv2 plant after gamma-irradiation than in the wild-type plants and was similar to that in the atr plants, suggesting that the suv2 mutant is defective in cell-cycle arrest in response to DNA damage. Overall, these results suggest that the gene disrupted in the suv2 mutant encodes an Arabidopsis homologue of the ATR-interacting protein ATRIP.


Assuntos
Arabidopsis/genética , Arabidopsis/efeitos da radiação , Dano ao DNA , DNA de Plantas/genética , Mutação , Raios Ultravioleta , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Multimerização Proteica
12.
Plant J ; 55(6): 895-908, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18494853

RESUMO

SUMMARY: Upon blockage of chromosomal replication by DNA lesions, Y-family polymerases interact with monoubiquitylated proliferating cell nuclear antigen (PCNA) to catalyse translesion synthesis (TLS) and restore replication fork progression. Here, we assessed the roles of Arabidopsis thaliana POLH, which encodes a homologue of Y-family polymerase eta (Poleta), PCNA1 and PCNA2 in TLS-mediated UV resistance. A T-DNA insertion in POLH sensitized the growth of roots and whole plants to UV radiation, indicating that AtPoleta contributes to UV resistance. POLH alone did not complement the UV sensitivity conferred by deletion of yeast RAD30, which encodes Poleta, although AtPoleta exhibited cyclobutane dimer bypass activity in vitro, and interacted with yeast PCNA, as well as with Arabidopsis PCNA1 and PCNA2. Co-expression of POLH and PCNA2, but not PCNA1, restored normal UV resistance and mutation kinetics in the rad30 mutant. A single residue difference at site 201, which lies adjacent to the residue (lysine 164) ubiquitylated in PCNA, appeared responsible for the inability of PCNA1 to function with AtPoleta in UV-treated yeast. PCNA-interacting protein boxes and an ubiquitin-binding motif in AtPoleta were found to be required for the restoration of UV resistance in the rad30 mutant by POLH and PCNA2. These observations indicate that AtPoleta can catalyse TLS past UV-induced DNA damage, and links the biological activity of AtPoleta in UV-irradiated cells to PCNA2 and PCNA- and ubiquitin-binding motifs in AtPoleta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Clonagem Molecular , Dano ao DNA , Replicação do DNA , DNA Bacteriano/genética , DNA Complementar/genética , DNA Polimerase Dirigida por DNA/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação , RNA de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido , Raios Ultravioleta
13.
Plant Physiol ; 145(3): 1052-60, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17827267

RESUMO

To clarify the functions of the Arabidopsis thaliana REV1 (AtREV1) protein, we expressed it in Escherichia coli and purified it to near homogeneity. The deoxynucleotidyl transferase activity of the recombinant AtREV1 was examined in vitro using a primer extension assay. The recombinant AtREV1 transferred one or two nucleotides to the primer end. It efficiently inserted dCMP regardless of the opposite base. AtREV1 also inserted a dCMP opposite an apurinic/apyrimidinic site, which is physiologically generated or induced by various DNA-damaging agents. In contrast, AtREV1 had no insertion activities against UV-inducible DNA lesions as reported in yeast or mammalian system. Although the substrate specificity of AtREV1 was rather narrow in the presence of magnesium ion, it widened in the presence of manganese ion. These results suggest that AtREV1 serves as a deoxycytidyl transferase in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , DNA Nucleotidilexotransferase/metabolismo , Nucleotidiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cátions Bivalentes , DNA Nucleotidilexotransferase/genética , Escherichia coli/genética , Nucleotidiltransferases/genética , Proteínas Recombinantes
14.
DNA Repair (Amst) ; 6(12): 1829-38, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17715002

RESUMO

The yeast REV3 gene encodes the catalytic subunit of DNA polymerase zeta (pol zeta), a B family polymerase that performs mutagenic DNA synthesis in cells. To probe pol zeta mutagenic functions, we generated six mutator alleles of REV3 with amino acid replacements for Leu979, a highly conserved residue inferred to be at the pol zeta active site. Replacing Leu979 with Gly, Val, Asn, Lys, Met or Phe resulted in yeast strains with elevated UV-induced mutant frequencies. While four of these strains had reduced survival following UV irradiation, the rev3-L979F and rev3-L979M strains had normal survival, suggesting retention of pol zeta catalytic activity. UV mutagenesis in the rev3-L979F background was increased when photoproduct bypass by pol eta was eliminated by deletion of RAD30. The rev3-L979F mutation had little to no effect on mutagenesis in an ogg1Delta background, which cannot repair 8-oxo-guanine in DNA. UV-induced can1 mutants from rev3-L979F and rad30Deltarev3-L979F strains primarily contained base substitutions and complex mutations, suggesting error-prone bypass of UV photoproducts by L979F pol zeta. Spontaneous mutation rates in rev3-L979F and rev3-L979M strains are elevated by about two-fold overall and by two- to eight-fold for C to G transversions and complex mutations, both of which are known to be generated by wild-type pol zetain vitro. These results indicate that Rev3p-Leu979 replacements reduce the fidelity of DNA synthesis by yeast pol zetain vivo. In conjunction with earlier studies, the data establish that the conserved amino acid at the active site location occupied by Leu979 is critical for the fidelity of all four yeast B family polymerases. Reduced fidelity with retention of robust polymerase activity suggests that the homologous rev3-L979F allele may be useful for analyzing pol zeta functions in mammals, where REV3 deletion is lethal.


Assuntos
Alelos , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/enzimologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...