Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108390, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077129

RESUMO

Does the circadian clock keep running under such hypothermic states as daily torpor and hibernation? This fundamental question has been a research subject for decades but has remained unsettled. We addressed this subject by monitoring the circadian rhythm of clock gene transcription and intracellular Ca2+ in the neurons of the suprachiasmatic nucleus (SCN), master circadian clock, in vitro under a cold environment. We discovered that the transcriptional and Ca2+ rhythms are maintained at 22°C-28°C, but suspended at 15°C, accompanied by a large Ca2+ increase. Rewarming instantly resets the Ca2+ rhythms, while transcriptional rhythms reach a stable phase after the transient state and recover their phase relationship with the Ca2+ rhythm. We conclude that SCN neurons remain functional under moderate hypothermia but stop ticking in deep hypothermia and that the rhythms reset after rewarming. These data also indicate that stable Ca2+ oscillation precedes clock gene transcriptional rhythms in SCN neurons.

3.
Dev Growth Differ ; 65(6): 311-320, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37350158

RESUMO

Embryo contour extraction is the initial step in the quantitative analysis of embryo morphology, and it is essential for understanding the developmental process. Recent developments in light-sheet microscopy have enabled the in toto time-lapse imaging of embryos, including zebrafish. However, embryo contour extraction from images generated via light-sheet microscopy is challenging owing to the large amount of data and the variable sizes, shapes, and textures of objects. In this report, we provide a workflow for extracting the contours of zebrafish blastula and gastrula without contour labeling of an embryo. This workflow is based on the edge detection method using a change point detection approach. We assessed the performance of the edge detection method and compared it with widely used edge detection and segmentation methods. The results showed that the edge detection accuracy of the proposed method was superior to those of the Sobel, Laplacian of Gaussian, adaptive threshold, Multi Otsu, and k-means clustering-based methods, and the noise robustness of the proposed method was superior to those of the Multi Otsu and k-means clustering-based methods. The proposed workflow was shown to be useful for automating small-scale contour extractions of zebrafish embryos that cannot be specifically labeled owing to constraints, such as the availability of microscopic channels. This workflow may offer an option for contour extraction when deep learning-based approaches or existing non-deep learning-based methods cannot be applied.


Assuntos
Microscopia , Peixe-Zebra , Animais , Microscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
4.
Front Plant Sci ; 14: 1171531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351202

RESUMO

Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves.

5.
Dev Biol ; 500: 22-30, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247832

RESUMO

Xenopus young tadpoles regenerate a limb with the anteroposterior (AP) pattern, but metamorphosed froglets regenerate a hypomorphic limb after amputation. The key gene for AP patterning, shh, is expressed in a regenerating limb of the tadpole but not in that of the froglet. Genomic DNA in the shh limb-specific enhancer, MFCS1 (ZRS), is hypermethylated in froglets but hypomethylated in tadpoles: shh expression may be controlled by epigenetic regulation of MFCS1. Is MFCS1 specifically activated for regenerating the AP-patterned limb? We generated transgenic Xenopus laevis lines that visualize the MFCS1 enhancer activity with a GFP reporter. The transgenic tadpoles showed GFP expression in hoxd13-and shh-expressing domains of developing and regenerating limbs, whereas the froglets showed no GFP expression in the regenerating limbs despite having hoxd13 expression. Genome sequence analysis and co-transfection assays using cultured cells revealed that Hoxd13 can activate Xenopus MFCS1. These results suggest that MFCS1 activation correlates with regeneration of AP-patterned limbs and that re-activation of epigenetically inactivated MFCS1 would be crucial to confer the ability to non-regenerative animals for regenerating a properly patterned limb.


Assuntos
Epigênese Genética , Extremidades , Animais , Xenopus laevis/genética , Animais Geneticamente Modificados , Extremidades/fisiologia , Fatores de Transcrição/genética
6.
Nano Lett ; 22(14): 5698-5707, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35792763

RESUMO

Despite improved sensitivity of nanothermometers, direct observation of heat transport inside single cells has remained challenging for the lack of high-speed temperature imaging techniques. Here, we identified insufficient temperature resolution under short signal integration time and slow sensor kinetics as two major bottlenecks. To overcome the limitations, we developed B-gTEMP, a nanothermometer based on the tandem fusion of mNeonGreen and tdTomato fluorescent proteins. We visualized the propagation of heat inside intracellular space by tracking the temporal variation of local temperature at a time resolution of 155 µs and a temperature resolution 0.042 °C. By comparing the fast in situ temperature dynamics with computer-simulated heat diffusion, we estimated the thermal diffusivity of live HeLa cells. The present thermal diffusivity in cells was about 1/5.3 of that of water and much smaller than the values reported for bulk tissues, which may account for observations of heterogeneous intracellular temperature distributions.


Assuntos
Temperatura Alta , Água , Células HeLa , Humanos , Temperatura
7.
iScience ; 25(7): 104524, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35754731

RESUMO

The morphology of collagen-producing cells and the structure of produced collagen in the dermis have not been well-described. This lack of insights has been a serious obstacle in the evaluation of skin regeneration. We succeeded in visualizing collagen-producing cells and produced collagen using the axolotl skin, which is highly transparent. The visualized dermal collagen had a lattice-like structure. The collagen-producing fibroblasts consistently possessed the lattice-patterned filopodia along with the lattice-patterned collagen network. The dynamics of this lattice-like structure were also verified in the skin regeneration process of axolotls, and it was found that the correct lattice-like structure was not reorganized after simple skin wounding but was reorganized in the presence of nerves. These findings are not only fundamental insights in dermatology but also valuable insights into the mechanism of skin regeneration.

8.
Biochem Biophys Res Commun ; 601: 65-72, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35228123

RESUMO

Taste recognition mediated by taste receptors is critical for the survival of animals in nature and is an important determinant of nutritional status and quality of life in humans. However, many factors including aging, diabetes, zinc deficiency, infection with influenza or cold viruses, and chemotherapy can trigger dysgeusia, for which a standard treatment has not been established. We here established an engineered strain of medaka (Oryzias latipes) that expresses green fluorescent protein (GFP) from the endogenous taste 1 receptor 3 (T1R3) gene locus with the use of the CRISPR-Cas9 system. This T1R3-GFP knock-in (KI) strain allows direct visualization of expression from this locus by monitoring of GFP fluorescence. The pattern of GFP expression in the T1R3-GFP KI fish thus mimicked that of endogenous T1R3 gene expression. Furthermore, exposure of T1R3-GFP KI medaka to water containing monosodium glutamate or the anticancer agent 5-fluorouracil resulted in an increase or decrease, respectively, in GFP fluorescence intensity, effects that also recapitulated those on T1R3 mRNA abundance. Finally, screening for agents that affect GFP fluorescence intensity in T1R3-GFP KI medaka identified tryptophan as an amino acid that increases T1R3 gene expression. The establishment of this screening system for taste receptor expression in medaka provides a new tool for the development of potential therapeutic agents for dysgeusia.


Assuntos
Oryzias , Animais , Sistemas CRISPR-Cas/genética , Disgeusia/genética , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Oryzias/genética , Qualidade de Vida , Paladar
12.
Semin Cell Dev Biol ; 100: 109-121, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31831357

RESUMO

Skin wounds are among the most common injuries in animals and humans. Vertebrate skin is composed of an epidermis and dermis. After a deep skin injury in mammals, the wound heals, but the dermis cannot regenerate. Instead, collagenous scar tissue forms to fill the gap in the dermis, but the scar does not function like the dermis and often causes disfiguration. In contrast, in non-amniote vertebrates, including fish and amphibians, the dermis and skin derivatives are regenerated after a deep skin injury, without a recognizable scar remaining. Furthermore, skin regeneration can be compared with a higher level of organ regeneration represented by limb regeneration in these non-amniotes, as fish, anuran amphibians (frogs and toads), and urodele amphibians (newts and salamanders) have a high capacity for organ regeneration. Comparative studies of skin regeneration together with limb or other organ regeneration could reveal how skin regeneration is stepped up to a higher level of regeneration. The long history of regenerative biology research has revealed that fish, anurans, and urodeles have their own strengths as models for regeneration studies, and excellent model organisms of these non-amniote vertebrates that are suitable for molecular genetic studies are now available. Here, we summarize the advantages of fish, anurans, and urodeles for skin regeneration studies with special reference to three model organisms: zebrafish (Danio rerio), African clawed frog (Xenopus laevis), and Iberian ribbed newt (Pleurodele waltl). All three of these animals quickly cover skin wounds with the epidermis (wound epidermis formation) and regenerate the dermis and skin derivatives as adults. The availability of whole genome sequences, transgenesis, and genome editing with these models enables cell lineage tracing and the use of human disease models in skin regeneration phenomena, for example. Zebrafish present particular advantages in genetics research (e.g., human disease model and Cre-loxP system). Amphibians (X. laevis and P. waltl) have a skin structure (keratinized epidermis) common with humans, and skin regeneration in these animals can be stepped up to limb regeneration, a higher level of regeneration.


Assuntos
Cicatriz , Regeneração , Pele/citologia , Vertebrados , Animais , Humanos
13.
Cold Spring Harb Protoc ; 2018(12)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-29769391

RESUMO

We describe a precise and reproducible gene-induction method in the amphibian, Xenopus laevis Tetrapod amphibians are excellent models for studying the mechanisms of three-dimensional organ regeneration because they have an exceptionally high regenerative ability. However, spatial and temporal manipulation of gene expression has been difficult in amphibians, hindering studies on the molecular mechanisms of organ regeneration. Recently, however, development of a Xenopus transgenic system with a heat-shock-inducible gene has enabled the manipulation of specific genes. Here, we applied an infrared laser-evoked gene operator (IR-LEGO) system to the regenerating tail of Xenopus tadpoles. In this method, a local heat shock by laser irradiation induces gene expression at the single-cell level. After amputation, Xenopus tadpoles regenerate a functional tail, including spinal cord. The regenerating tail is flat and transparent enabling the targeting of individual cells by laser irradiation. In this protocol, a single neural progenitor cell in the spinal cord of the regenerating tail is labeled with heat-shock-inducible green fluorescent protein (GFP). Gene induction at the single-cell level provides a method for rigorous cell-lineage tracing and for analyzing gene function in both cell-autonomous and noncell-autonomous contexts. The method can be modified to study the regeneration of limbs or organs in other amphibians, including Xenopus tropicalis, newts, and salamanders.


Assuntos
Raios Infravermelhos , Lasers , Regeneração/efeitos da radiação , Cauda/fisiologia , Cauda/efeitos da radiação , Ativação Transcricional/efeitos da radiação , Animais , Larva , Xenopus laevis
14.
Zoolog Sci ; 32(3): 296-306, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26402924

RESUMO

In order to study the freeze-tolerance mechanism in the Japanese tree frog, Hyla japonica, wecloned a eDNA encoding aquaporin (AQP) 9 from its liver. The predicted amino acid sequence ofH. japonica AQP9 (AQP-h9) contained six putative transmembrane domains and two conservedAsn-Pro-Aia motifs, which are characteristic of AQPs. A swelling assay using Xenopus laevisoocytes injected with AQP-h9 cRNA showed that AQP-h9 facilitated water and glycerol permeation,confirming its property as an aquaglyceroporin. Subsequently, glycerol concentrations in serumand tissue extracts were compared among tree frogs that were hibernating, frozen, or thawed afterfreezing. Serum glycerol concentration of thawed frogs was significantly higher than that of hibernatingfrogs. Glycerol content in the liver did not change in the freezing experiment, whereas thatin the skeletal muscle was elevated in thawed frogs as compared with hibernating or frozen frogs. Histological examination of the liver showed that erythrocytes aggregated in the sinusoids during hibernation and freezing, and immunoreactive AQP-h9 protein was detected over the erythrocytes. The AQP-h9 labeling was more intense in frozen frogs than in hibernating frogs, but nearly undetectable in thawed frogs. For the skeletal muscle, weak labels for AQP-h9 were observed in the cytoplasm of myocytes of hibernating frogs. AQP-h9 labeling was markedly enhanced by freezing and was decreased by thawing. These results indicate that glycerol may act as a c;:ryoprotectant in H. japonica and that during hibernation, particularly during freezing, AQP-h9 may be involved in glycerol uptake in erythrocytes in the liver and in intracellular glycerol transport in the skeletal muscle cells.


Assuntos
Anuros/genética , Aquagliceroporinas/metabolismo , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Animais , Aquagliceroporinas/genética , Sequência de Bases , Congelamento , Hibernação , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Gen Comp Endocrinol ; 206: 193-202, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25051213

RESUMO

Nkx2 homeodomain transcription factors are involved in various developmental processes and cell specification: e.g. in mammals, NKX2-1 is essential for thyroid-specific gene expression and thyroid morphogenesis. Among Nkx2 proteins, information is still very limited for Nkx2-4. In the present study, we have identified three distinct cDNAs encoding Nkx2-4 isoforms (Nkx2-4a, -b, and -c) from the rainbow trout thyroid tissue, and characterized their transcriptional properties. The trout Nkx2-4 proteins were all predicted to conserve three characteristic domains: the tinman-like amino terminal decapeptide, the NK2 homeodomain, and the NK2-specific domain, and also share 75-89% amino acid similarity. It was shown by dual luciferase assay that Nkx2-4a and Nkx2-4b, but not Nkx2-4c, significantly activated transcription from a cotransfected rat thyroglobulin (TG) promoter. An electrophoretic mobility shift assay indicated that all the Nkx2-4 isoforms could bind to the TG promoter, implying that the faint transcriptional activity of Nkx2-4c might result from some critical amino acid substitution(s) outside the homeodomain. RT-PCR analysis revealed similar tissue distribution patterns for Nkx2-4a and Nkx2-4b mRNAs. Both mRNAs were expressed abundantly in the thyroid, and weakly in the testis. On the other hand, Nkx2-4c mRNA was detected in the ovary as well as in the thyroid. The expression sites of Nkx2-4c mRNA were localized, by in situ hybridization histochemistry, to the ovarian granulosa cells and to the thyroid follicular cells. The results suggest that in the rainbow trout, Nkx2-4a and Nkx2-4b might play a major role in TG gene transcription whereas Nkx2-4c might have some functions in the ovary as well as the thyroid.


Assuntos
Regulação da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar/genética , Ensaio de Desvio de Mobilidade Eletroforética , Hibridização In Situ , Dados de Sequência Molecular , Oncorhynchus mykiss/metabolismo , Filogenia , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Tireoglobulina/metabolismo , Fator Nuclear 1 de Tireoide , Distribuição Tecidual , Ativação Transcricional
16.
Gen Comp Endocrinol ; 198: 22-31, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24380675

RESUMO

We have identified two distinct Pax8 (a and b) mRNAs from the thyroid gland of the rainbow trout (Oncorhynchus mykiss), which seemed to be generated by alternative splicing. Both Pax8a and Pax8b proteins were predicted to possess the paired domain, octapeptide, and partial homeodomain, while Pax8b lacked the carboxy-terminal portion due to an insertion in the coding region of the mRNA. RT-PCR analysis showed each of Pax8a and Pax8b mRNAs to be abundantly expressed in the thyroid and kidney. In situ hybridization histochemistry further detected the expression of Pax8 mRNA in the epithelial cells of the thyroid follicles of the adult trout and in the thyroid primordial cells of the embryo. The functional properties of Pax8a and Pax8b were investigated by dual luciferase assay. The transcriptional regulation by the rat thyroid peroxidase (TPO) promoter was found to be increased by Pax8a, but not by Pax8b. Pax8a further showed synergistic transcriptional activity with rat Nkx2-1 for the human TPO upstream region including the enhancer and promoter. On the other hand, Pax8b decreased the synergistic activity of Pax8a and Nkx2-1. Electrophoretic mobility shift assay additionally indicated that not only Pax8a but also Pax8b can bind to the TPO promoter and enhancer, implying that the inhibitory effect of Pax8b might result from the lack of the functional carboxy-terminal portion. Collectively, the results suggest that for the trout thyroid gland, Pax8a may directly increase TPO gene expression in cooperation with Nkx2-1 while Pax8b may work as a non-activating competitor for the TPO transcription.


Assuntos
Processamento Alternativo , Autoantígenos/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/fisiologia , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Oncorhynchus mykiss/genética , Fatores de Transcrição Box Pareados/genética , Glândula Tireoide/metabolismo , Sequência de Aminoácidos , Animais , Autoantígenos/metabolismo , Sequência de Bases , Clonagem Molecular , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Peixes/genética , Hibridização In Situ , Iodeto Peroxidase/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Filogenia , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Glândula Tireoide/citologia , Fator Nuclear 1 de Tireoide , Distribuição Tecidual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...