Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 89(6): 1809-1819, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36562925

RESUMO

AIMS: TMS-007, an SMTP family member, modulates plasminogen conformation and enhances plasminogen-fibrin binding, leading to promotion of endogenous fibrinolysis. Its anti-inflammatory action, mediated by soluble epoxide hydrolase inhibition, may contribute to its efficacy. Evidence suggests that TMS-007 can effectively treat experimental thrombotic and embolic strokes with a wide time window, while reducing haemorrhagic transformation. We aim to evaluate the safety, pharmacokinetics and pharmacodynamics of TMS-007 in healthy volunteers. METHODS: This was a randomized, placebo-controlled, double blind, dose-escalation study, administered as a single intravenous infusion of TMS-007 in cohorts of healthy male Japanese subjects. Six cohorts were planned, but only five were completed. In each cohort (n = 8), individuals were randomized to receive one of five doses of TMS-007 (3, 15, 60, 180 or 360 mg; n = 6) or placebo (n = 2). RESULTS: TMS-007 was generally well tolerated, and no serious adverse events were attributed to the drug. A linear dose-dependency was observed for plasma TMS-007 levels. No symptoms of bleeding were observed on brain MRI analysis, and no bleeding-related responses were found on laboratory testing. The plasma levels of the coagulation factor fibrinogen and the anti-fibrinolysis factor α2 -antiplasmin levels were unchanged after TMS-007 dosing. A slight increase in the plasma level of plasmin-α2 -antiplasmin complex, an index of plasmin formation, was observed in the TMS-007 group in cohort 2. CONCLUSIONS: TMS-007 is generally well tolerated and exhibits favourable pharmacokinetic profiles that warrant further clinical development.


Assuntos
Antifibrinolíticos , Fibrinolisina , Humanos , Masculino , Fenol , Fenóis/farmacologia , Plasminogênio , Hemorragia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Método Duplo-Cego , Relação Dose-Resposta a Droga
2.
Yakugaku Zasshi ; 137(7): 817-822, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28674294

RESUMO

Monoclonal antibodies have been considered promising therapeutic entities due to their highly specific binding to antigens. For oncology in particular, the tumor specific binding of an antibody, without affecting normal tissue, is considered an ideal cancer therapy. Although the proposed mechanism of action of antibody therapeutics varies by targets and indications, antibody-dependent cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), ligand neutralization and inhibition of the signaling pathway are commonly used. Recent advances in genomic information, genetic engineering, and transgenic technology have greatly accelerated drug development processes. It is also possible to add new functions to antibody molecules through molecular engineering. For example, antibody-drug conjugates (ADC), which combine a monoclonal antibody and a small-molecule cytotoxic drug, have been successfully used for cancer treatment. It has been more than 20 years since the first therapeutic antibody was approved in Japan, and there are now more than 30 antibodies on the market, with many new molecules under development. Despite some drawbacks and challenges, antibody therapeutics hold great promise as we advance our knowledge and technologies in the coming years.


Assuntos
Anticorpos Monoclonais , Descoberta de Drogas/tendências , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Proteínas do Sistema Complemento , Aprovação de Drogas , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Ligantes , Neoplasias/tratamento farmacológico , Transdução de Sinais
3.
Clin Cancer Res ; 21(14): 3252-62, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862760

RESUMO

PURPOSE: Chemotherapies are limited by a narrow therapeutic index resulting in suboptimal exposure of the tumor to the drug and acquired tumor resistance. One approach to overcome this is through antibody-drug conjugates (ADC) that facilitate greater potency via target-specific delivery of highly potent cytotoxic agents. EXPERIMENTAL DESIGN: In this study, we used a bioinformatics approach to identify the lymphocyte antigen 6 complex locus E (LY6E), an IFN-inducible glycosylphosphatidylinositol (GPI)-linked cell membrane protein as a promising ADC target. We developed a monoclonal anti-LY6E antibody and characterized in situ LY6E expression in over 750 cancer specimens and normal tissues. Target-dependent anti-LY6E ADC killing was investigated both in vitro and in vivo using patient-derived xenograft models. RESULTS: Using in silico approaches, we found that LY6E was significantly overexpressed and amplified in a wide array of different human solid tumors. IHC analysis revealed high LY6E protein expression in a number of tumor types, such as breast, lung, gastric, ovarian, pancreatic, kidney and head/neck carcinomas. Characterization of the endocytic pathways for LY6E revealed that the LY6E-specific antibody is internalized into cells leading to lysosomal accumulation. Consistent with this, a LY6E-specific ADC inhibited in vitro cell proliferation and produced durable tumor regression in vivo in clinically relevant LY6E-expressing xenograft models. CONCLUSIONS: Our results identify LY6E as a highly promising molecular ADC target for a variety of solid tumor types with current unmet medical need.


Assuntos
Antígenos de Neoplasias/farmacologia , Antígenos de Superfície/imunologia , Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Neoplasias/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citometria de Fluxo , Proteínas Ligadas por GPI/imunologia , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 72(6): 1568-78, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22307840

RESUMO

Wnt ligand-driven tumor growth is inhibited by the soluble Wnt inhibitor Fzd8CRD, but the mechanism through which this effect is mediated is unknown. In the MMTV-Wnt1 mouse model, regression of mammary tumors by Fzd8CRD treatment coincides with an acute and strong induction of insulin-like growth factor (IGF)-binding protein IGFBP5, an antagonist of IGF signaling that mediates involution of mammary gland in females after offspring are weaned. In this study, we show that repression of this IGF inhibitory pathway is crucial for Wnt-driven growth of mammary tumors. We found that IGFBP5 regulation was mediated by the ß-catenin-dependent Wnt pathway. Wnt, in addition to IGF ligands, facilitated tumor growth by paracrine communication among tumor cells. In addition, Fzd8CRD caused precocious induction of IGFBP5 in normal mammary glands undergoing involution, implying an acceleration of the involution process by inhibition of Wnt signaling. The molecular and phenotypic parallel between tumor regression and mammary gland involution suggests that Wnt-driven mammary tumors use the same growth mechanism as proliferating normal mammary glands.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt1/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Feminino , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Mamárias Experimentais/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Comunicação Parácrina/efeitos dos fármacos , beta Catenina/metabolismo
5.
PLoS One ; 5(1): e8611, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20087418

RESUMO

BACKGROUND: Histological examinations of MMTV-Wnt1 tumors reveal drastic differences in the tumor vasculature when compared to MMTV-Her2 tumors. However, these differences have not been formally described, nor have any angiogenic factors been implicated to be involved in the Wnt1 tumors. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that MMTV-Wnt1 tumors were more vascularized than MMTV-Her2 tumors, and this correlated with significantly higher expression of a CXC chemokine, stromal cell-derived factor-1 (SDF1/CXCL12) but not with VEGFA. Isolation of various cell types from Wnt1 tumors revealed that SDF1 was produced by both tumor myoepithelial cells and stromal cells, whereas Her2 tumors lacked myoepithelial cells and contained significantly less stroma. The growth of Wnt1 tumors, but not Her2 tumors, was inhibited by a neutralizing antibody to SDF1, but not by neutralization of VEGFA. Anti-SDF1 treatment decreased the proportion of infiltrating Gr1(+) myeloid cells in the Wnt1 tumors, which correlated with a decrease in the percentage of endothelial cells. The involvement of Gr1(+) cells was evident from the retardation of Wnt1 tumor growth following in vivo depletion of these cells with an anti-Gr1-specific antibody. This degree of inhibition on Wnt1 tumor growth was comparable, but not additive, to the effect observed with anti-SDF1, indicative of overlapping mechanisms of inhibition. In contrast, Her2 tumors were not affected by the depletion of Gr1(+) cells. CONCLUSIONS/SIGNIFICANCE: We demonstrated that SDF1 is important for Wnt1, but not for HER2, in inducing murine mammary tumor and the role of SDF1 in tumorigenesis involves Gr1(+) myeloid cells to facilitate growth and/or angiogenesis.


Assuntos
Antígeno CD11b/fisiologia , Quimiocina CXCL12/fisiologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Neoplasias Experimentais/fisiopatologia , Proteína Wnt1/fisiologia , Animais , Camundongos , Neoplasias Experimentais/virologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
6.
J Biochem ; 132(5): 697-703, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12417018

RESUMO

beta-Catenin transduces cytosolic signals to the nucleus in the Wnt pathway. The Wnt ligand stabilizes cytosolic beta-catenin protein, preventing its phosphorylation by inhibiting glycogen synthase kinase 3 (GSK3). Serine-33 and -37 of beta-catenin are GSK3 phosphorylation sites that serve as recognition sites for the beta-TRCP-ubiquitin ligase complex, which ultimately triggers beta-catenin degradation. Mutations at those two sites, as well as in Ser-45, stabilize beta-catenin. Recently, casein kinase I epsilon (CKI epsilon) has been shown to be a positive regulator of the Wnt pathway. Its action mechanism, however, remains unknown. Here I show that Ser-45 is phosphorylated not by GSK3 but by CKI epsilon. Axin, a scaffold protein that binds CKI epsilon and beta-catenin, enhances this CKI epsilon-mediated phosphorylation. Overexpression of CKI epsilon in cells increases the amount of beta-catenin phosphorylated at Ser-45. Ser-45 phosphorylated beta-catenin is a better substrate for GSK3, which suggests that CKI epsilon and GSK3 may co-operate in destabilizing beta-catenin. In spite of the fact that CKI epsilon was found as a positive regulator of the Wnt pathway, mutational analysis suggests that mutation of Ser-45 regulates beta-catenin stability by inhibiting the ability of GSK3 to phosphorylate Ser-33 and -37, thereby disrupting the interaction between beta-catenin, beta-TRCP and Axin. I propose that phosphorylation of Ser-45 by CKI epsilon plays an important role in regulating beta-catenin stability.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Quinases/metabolismo , Proteínas Repressoras , Transativadores/metabolismo , Proteínas de Peixe-Zebra , Animais , Proteína Axina , Caseína Quinases , Proteínas do Citoesqueleto/genética , Humanos , Técnicas In Vitro , Camundongos , Mutação , Fosforilação , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade , Transativadores/genética , Proteínas Wnt , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...