Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0285241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134185

RESUMO

Plant root development involves multiple signal transduction pathways. Notably, phytohormones like auxin and cytokinin are well characterized for their molecular mechanisms of action. Reactive oxygen species (ROS) serve as crucial signaling molecules in controlling root development. The transcription factor, UPBEAT1 (UPB1) is responsible for maintaining ROS homeostasis at the root tip, influencing the transition from cell proliferation to differentiation. While UPB1 directly regulates peroxidase expression to control ROS homeostasis, it targets genes other than peroxidases, suggesting its involvement in root growth through non-ROS signals. Our investigation focused on the transcription factor MYB50, a direct target of UPB1, in Arabidopsis thaliana. By analyzing multiple fluorescent proteins and conducting RNA-seq and ChIP-seq, we unraveled a step in the MYB50 regulatory gene network. This analysis, in conjunction with the UPB1 regulatory network, demonstrated that MYB50 directly regulates the expression of PECTIN METHYLESTERASE INHIBITOR 8 (PMEI8). Overexpressing PMEI8, similar to the MYB50, resulted in reduced mature cell length. These findings establish MYB50 as a regulator of root growth within the UPB1 gene regulatory network. Our study presents a model involving transcriptional regulation by MYB50 in the UPB1 regulated root growth system and sheds light on cell elongation via pectin modification.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hidrolases de Éster Carboxílico , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferação de Células , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hidrolases de Éster Carboxílico/genética
2.
Plant J ; 115(5): 1408-1427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247130

RESUMO

Lateral roots (LRs) are critical to root system architecture development in plants. Although the molecular mechanisms by which auxin regulates LR development have been extensively studied, several additional regulatory systems are hypothesized to be involved. Recently, the regulatory role of very long chain fatty acids (VLCFAs) has been shown in LR development. Our analysis showed that LTPG1 and LTPG2, transporters of VLCFAs, are specifically expressed in the developing LR primordium (LRP), while the number of LRs is reduced in the ltpg1/ltpg2 double mutant. Moreover, late LRP development was hindered when the VLCFA levels were reduced by the VLCFA synthesis enzyme mutant, kcs1-5. However, the details of the regulatory mechanisms of LR development controlled by VLCFAs remain unknown. In this study, we propose a novel method to analyze the LRP development stages with high temporal resolution using a deep neural network and identify a VLCFA-responsive transcription factor, MYB93, via transcriptome analysis of kcs1-5. MYB93 showed a carbon chain length-specific expression response following treatment of VLCFAs. Furthermore, myb93 transcriptome analysis suggested that MYB93 regulated the expression of cell wall organization genes. In addition, we also found that LTPG1 and LTPG2 are involved in LR development through the formation of root cap cuticle, which is different from transcriptional regulation by VLCFAs. Our results suggest that VLCFA is a regulator of LRP development through transcription factor-mediated regulation of gene expression and the transportation of VLCFAs is also involved in LR development through root cap cuticle formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Graxos/metabolismo
3.
Biol Open ; 10(3)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-32816696

RESUMO

One of the major environmental stress factors that affect root growth is salinity. Arabidopsis thaliana, a glycophyte, shows halotropism, whereby it alters the direction of root growth in a non-gravitropic pattern to evade high soil salinity. Asymmetric auxin distribution regulated by the relocation of auxin-efflux carrier proteins is a key cellular event in the halotropic response. However, there are no reports of halotropism in halophytes. Here, we investigated root growth traits in Mesembryanthemum crystallinum (ice plant), under high salinity conditions. We hypothesized that ice plant roots would show halotropic responses different from those of Arabidopsis Notably, similar to halotropism observed in Arabidopsis, ice plant roots showed continuous root bending under salinity stress. However, the root elongation rate did not change in ice plants. Expression analyses of several genes revealed that auxin transport might be partially involved in ice plant halotropism. This study enhances our understanding of halophyte root adaptation to high salinity stress.


Assuntos
Mesembryanthemum/fisiologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , Tolerância ao Sal , Plantas Tolerantes a Sal , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino , Cloreto de Sódio
4.
Biosci Biotechnol Biochem ; 83(12): 2276-2279, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31469034

RESUMO

We introduce a rapid method for easily elucidating transcription factor (TF) cis-elements by adopting a highly efficient in vitro protein synthesis method and identifying protein-DNA interactions using PCR. We determined two cis-elements for plant TFs using this method, and the results confirmed our method as an easy and time-saving alternative for elucidating TF cis-elements using common laboratory procedures.


Assuntos
Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Plantas/metabolismo
5.
Sci Rep ; 9(1): 11358, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388054

RESUMO

Reactive oxygen species (ROS) play important roles as root growth regulators. We previously reported a comprehensive transcriptomic atlas, which we named ROS-map, that revealed ROS-responsible genes in Arabidopsis root tips. By using ROS-map, we have characterised an early ROS response key transcription factor, MYB30, as a regulator of root cell elongation under ROS signals. However, there are other ROS-responsible transcription factors which have the potential to regulate root growth. In the present study, we characterised the function of another early ROS-responsible transcription factor, ANAC032, that was selected from ROS-map. Overexpression of ANAC032 fused with the transcriptional activation domain, VP16, inhibited root growth, especially decreasing cell elongation. By transcriptome analysis, we revealed that ANAC032 regulated many stress-responsible genes in the roots. Intriguingly, ANAC032 upregulated MYB30 and its target genes. The upregulation of MYB30 target genes was completely abolished in the ANAC032-VP16x2 OX and ANAC032 estradiol-inducible line in myb30-2 mutants. Moreover, root growth inhibition was alleviated in ANAC032-OX in myb30-2 mutants. Overall, we characterised an upstream transcription factor, ANAC032, of the MYB30 transcriptional cascade which is a key regulator for root cell elongation under ROS signalling.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Redes Reguladoras de Genes , Meristema/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transativadores/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
6.
Commun Integr Biol ; 11(4): e1526604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534346

RESUMO

Reactive oxygen species (ROS) and plant hormones play important roles in regulating plant growth and stress responses as signaling molecules. Abscisic acid (ABA) is known as the key regulator of both abiotic and biotic stress responses. During stress responses, ABA is known to regulate ROS production, indicating that important crosstalk occurs between ROS and ABA signaling. We recently reported that MYB30, an MYB-type transcription factor, regulates root cell elongation under ROS signaling. In this study, we analyzed the molecular interaction between ROS and ABA signal during for root development, which is mediated through MYB30 transcriptional regulation. We showed that MYB30-regulated root cell elongation was mediated by ROS production under ABA signaling. Our findings will provide one piece of evidence of the complex cross talk between ROS and hormone signaling that regulates root development.

7.
Proc Natl Acad Sci U S A ; 115(20): E4710-E4719, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712840

RESUMO

Reactive oxygen species (ROS) are known to be important signal molecules that are involved in biotic and abiotic stress responses as well as in growth regulation. However, the molecular mechanisms by which ROS act as a growth regulator, as well as how ROS-dependent growth regulation relates to its roles in stress responses, are not well understood. We performed a time-course microarray analysis of Arabidopsis root tips upon treatment with hydrogen peroxide, which we named "ROS-map." Using the ROS-map, we identified an MYB transcription factor, MYB30, which showed a strong response to ROS treatment and is the key regulator of a gene network that leads to the hydrogen peroxide-dependent inhibition of root cell elongation. Intriguingly, this network contained multiple genes involved in very-long-chain fatty acid (VLCFA) transport. Finally, we showed that MYB30 is necessary for root growth regulation during defense responses, thus providing a molecular link between these two ROS-associated processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Meristema/imunologia , Imunidade Vegetal/genética , Raízes de Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequenciamento de Nucleotídeos em Larga Escala , Meristema/genética , Meristema/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/genética
8.
Biosci Biotechnol Biochem ; 81(11): 2139-2144, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29017432

RESUMO

Most plants do not tolerate highly saline environments; the development of salt stress tolerance is crucial for improving crop yield. An efficient way of finding genes involved in salt tolerance is to study and use data from halophytes. In this study, we used the Mesembryanthemum crystallinum (ice plant) expression data-set and selected for further study the gene McHKT2, which encodes for the Arabidopsis sodium transporter ortholog AtHKT1. In comparison with the HKT1 amino acid sequences from other plants, McHKT2 has several unique features. It seems to be localized to the plasma membrane, and its overexpression confers strong salt tolerance in Arabidopsis thaliana. Our results indicate that McHKT2 is a suitable candidate protein that can induce salt tolerance in non-halophytes. Like McHKT2, using transcriptome data-sets from halophytes such as ice plant give us an efficiency way to obtain new gene resources that might involve in plant salt tolerance.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Membrana Transportadoras/genética , Mesembryanthemum/genética , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Sódio/metabolismo , Sequência de Aminoácidos , Expressão Ectópica do Gene , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...