Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18618, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903837

RESUMO

Charge density wave (CDW) ordering has been an important topic of study for a long time owing to its connection with other exotic phases such as superconductivity and magnetism. The [Formula: see text] (R = rare-earth elements) family of materials provides a fertile ground to study the dynamics of CDW in van der Waals layered materials, and the presence of magnetism in these materials allows to explore the interplay among CDW and long range magnetic ordering. Here, we have carried out a high-resolution angle-resolved photoemission spectroscopy (ARPES) study of a CDW material [Formula: see text], which is antiferromagnetic below [Formula: see text], along with thermodynamic, electrical transport, magnetic, and Raman measurements. Our ARPES data show a two-fold symmetric Fermi surface with both gapped and ungapped regions indicative of the partial nesting. The gap is momentum dependent, maximum along [Formula: see text] and gradually decreases going towards [Formula: see text]. Our study provides a platform to study the dynamics of CDW and its interaction with other physical orders in two- and three-dimensions.

2.
J Phys Condens Matter ; 33(19)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33556927

RESUMO

We investigate the evolution of the local structural parameters and their implication in unconventional superconductivity of 122 class of materials employing extended x-ray absorption fine structure studies. The spectral functions near the FeK- and AsK-absorption edges of CaFe2As2and its superconducting composition, CaFe1.9Co0.1As2(Tc= 12 K) exhibit evidence of enhancement of Fe contributions near the Fermi level with Co substitution, which becomes more prominent at low temperatures indicating enhanced role of Fe in the electronic properties with doping. As-Fe and Fe-Fe bondlengths derived from the experimental data reveal evolution with temperature across the magneto-structural transition in the parent compound. The evolution of these parameters in Co-doped superconducting composition is similar to its parent compound although no magneto-structural transition is observed in this system. These results reveal an evidence of doping induced evolution to the proximity to critical behavior and/or strong nematic fluctuations which might be important for superconductivity in this system.

3.
J Phys Condens Matter ; 32(33): 33LT01, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252034

RESUMO

Employing high resolution hard x-ray photoemission spectroscopy, we investigate the electronic structure of an exotic Fe-based superconductor, CaFe2As2, which exhibits rich temperature pressure phase diagram and dichotomy on achieving superconductivity on application of pressure. The experimental valence band spectra exhibit significant differences for experiments at different surface sensitivities. We discover that the change in angle between light polarization and surface normal leads to similar orbital selective spectral response suggesting requirement of different methodology to probe the surface-bulk differences. Thus, the final state effects of the core level spectroscopy has been exploited to reveal the depth-resolved information. Strong features related to plasmon excitations have been observed in various core level spectra. Ca 2p spectra exhibit evidence of significant hybridization with the conduction electrons, and distinct features corresponding to the surface and bulk electronic structures while As core levels remain unaffected. The depth-resolved Fe 2p spectra at different temperatures exhibit interesting features suggesting structural anomaly may be a bulk property. All these results reveal complexity in the hybridization physics between Fe, As and Ca states presumably leading to exoticity in this material.

4.
Sci Rep ; 10(1): 1262, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988369

RESUMO

SmB6 has drawn much attention in recent times due to the discovery of anomalies in its ground state properties as well as prediction of topologically protected gapless surface states. Varied theories have been proposed to capture the ground state anomalies. Here, we studied the electronic structure of SmB6 employing density functional theory using different exchange correlation potentials, spin-orbit coupling and electron correlation strength. We discover that a suitable choice of interaction parameters such as spin-orbit coupling, electron correlation strength and exchange interaction within the generalized gradient approximation provides a good description of the spectral functions observed in the angle-resolved photoemission spectroscopy (ARPES) studies. The Fermi surface plots exhibit electron pockets around X-point and hole pockets around ΓX line having dominant Sm 4f character. These observations corroborate well with the recent experimental results involving quantum oscillation measurements, ARPES, etc. In addition to primarily Sm 4f contributions observed at the Fermi level, the results exhibit significantly large contribution from B 2p states compared to weak Sm 5d contributions. This suggests important role of B 2p - Sm 4f hybridization in the exotic physics of this system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...