Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12434, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528223

RESUMO

It is known that two-dimensional superconducting materials undergo a quantum phase transition from a localized state to superconductivity. When the disordered samples are cooled, bosons (Cooper pairs) are generated from Fermi glass and reach superconductivity through Bose glass. However, there has been no universal expression representing the transition from Fermi glass to Bose glass. Here, we discovered an experimental renormalization group flow from Fermi glass to Bose glass in terms of simple [Formula: see text]-function analysis. To discuss the universality of this flow, we analyzed manifestly different systems, namely a Nd-based two-dimensional layered perovskite and an ultrathin Pb film. We find that all our experimental data for Fermi glass fall beautifully into the conventional self-consistent [Formula: see text]-function. Surprisingly, however, flows perpendicular to the conventional [Formula: see text]-function are observed in the weakly localized regime of both systems, where localization becomes even weaker. Consequently, we propose a universal transition from Bose glass to Fermi glass with the new two-dimensional critical sheet resistance close to [Formula: see text].

3.
Nat Mater ; 20(8): 1093-1099, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34017119

RESUMO

Control of the phase transition from topological to normal insulators can allow for an on/off switching of spin current. While topological phase transitions have been realized by elemental substitution in semiconducting alloys, such an approach requires preparation of materials with various compositions. Thus it is quite far from a feasible device application, which demands a reversible operation. Here we use angle-resolved photoemission spectroscopy and spin- and angle-resolved photoemission spectroscopy to visualize the strain-driven band-structure evolution of the quasi-one-dimensional superconductor TaSe3. We demonstrate that it undergoes reversible strain-induced topological phase transitions from a strong topological insulator phase with spin-polarized, quasi-one-dimensional topological surface states, to topologically trivial semimetal and band insulating phases. The quasi-one-dimensional superconductor TaSe3 provides a suitable platform for engineering the topological spintronics, for example as an on/off switch for a spin current that is robust against impurity scattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...