Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 15(18): e1900481, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30957941

RESUMO

Large-area patterning of metals in nanoscale has always been a challenge. Traditional microfabrication processes involve many high-cost steps, including etching and high-vacuum deposit, which limit the development of functional nanostructures, especially multiscale metallic patterns. Here, multiplex laser shock imprinting (MLSI) process is introduced to directly manufacture hierarchical micro/nanopatterns at a high strain rate on metallic surfaces using soft optical disks with 1D periodic trenches as molds. The unique metal/polymer layered structures in inexpensive soft optical disks make them strong candidates of molds for MLSI processes. The feasibility of MLSI on hard metals toward soft molds is studied using theoretical simulation. In addition, various types of hierarchical structures are fabricated via MLSI, and their optical reflectance can be modulated via a combination of depth (laser power density), width (types of molds), and angles (rotation between molds). The optical properties have been studied with surface plasmon polariton modes theory. This work opens a new way of manufacturing hierarchical micro/nanopatterns on metals, which is promising for future applications in fields of plasmonics and metasurfaces.

2.
Opt Express ; 25(20): A880-A895, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041299

RESUMO

Deliberate control of thermal emission properties using nanophotonics has improved a number of applications including thermophotovoltaics (TPV), radiative cooling and infrared spectroscopy. In this work, we study the effect of simultaneous control of angular and spectral properties of thermal emitters on the efficiencies of TPV systems. While spectral selectivity reduces sub-bandgap losses, angular selectivity is expected to enhance view factors at larger separation distances and hence to provide flexibilities in cooling the photovoltaic converter. We propose a design of an angular and spectral selective thermal emitter based on waveguide perfect absorption phenomena in epsilon-near-zero thin-films. Aluminum-doped Zinc-Oxide is used as an epsilon-near-zero material with a cross-over frequency in the near-infrared. A high contrast grating is designed to restrict the emission in a range of angles around the normal direction, while an integrated filter ensures spectral selectivity to reduce sub-bandgap losses. Theoretical analysis shows an expected relative enhancement of the TPV system efficiency of at least 32% using selective emitters with ideal angular and spectral selectivity at large separation distances compared to a blackbody. This enhancement factor, however, reduces to 3.9% with non-ideal selective emitters. This big reduction of the efficiency is attributed to sub-bandgap losses, off-angular losses and high-temperature dependence of optical constants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...