Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(7): 971-990, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554183

RESUMO

The use of nanomaterials in biofuel production from lignocellulosic biomass offers a promising approach to simultaneously address environmental sustainability and economic viability. This review provides an overview of the environmental and economic implications of integrating nanotechnology into biofuel production from low-cost lignocellulosic biomass. In this review, we highlight the potential benefits and challenges of nano-based biofuel production. Nanomaterials provide opportunities to improve feedstock pretreatment, enzymatic hydrolysis, fermentation, and catalysis, resulting in enhanced process efficiency, lower energy consumption, and reduced environmental impact. Conducting life cycle assessments is crucial for evaluating the overall environmental footprint of biofuel production. An economic perspective that focuses on the cost implications of utilizing nanomaterials in biofuel production is also discussed. A comprehensive understanding of both environmental and economic dimensions is essential to fully harness the potential of nanomaterials in biofuel production from lignocellulosic biomass and to move towards sustainable future energy.


Assuntos
Biocombustíveis , Biomassa , Lignina , Lignina/metabolismo , Lignina/química , Biocombustíveis/economia , Nanoestruturas/química , Nanotecnologia/economia
2.
Heliyon ; 8(9): e10406, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36119882

RESUMO

Among the different metal oxide nanoparticles, zinc oxide nanoparticles have gained significant importance due to their antibacterial properties against clinically pathogenic bacteria during the organal development. In the present study, biogenic zinc oxide nanoparticles were synthesized using seed extract of Citrus limon by a simple, cost-effective, and green chemistry approach. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Dynamic Light Scattering, and Scanning Electron Microscopy. Next, the antimicrobial activity of ZnO NPs was tested against clinically pathogenic bacteria, i.e., Pseudomonas fluorescens, Escherichia coli, Enterobacter aerogenes, and Bacillus subtilis. Followed by, ZnO NPs were evaluated for the development of caudal fin in Zebrafish. The UV-Vis spectram result showed a band at 380 nm and FTIR results confirmed the ZnO NPs. The average crystallite size of the ZnO NPs was 52.65 ± 0.5 nm by the Debye Scherrer equation and SEM showed spherical-shaped particles. A zone of inhibition around ZnO NPs applied to P. fluorescens indicates sensitive to ZnO NPs followed by B. subtilis. Among the four different bacterial pathogens, E. aerogenes was the most susceptible compared to the other three pathogens. The calculated sub-lethal concentration of ZnO NPs at 96 h was 153.8 mg/L with a 95% confidence limit ranging from 70.62 to 214.18 mg/L, which was used with partially amputated zebrafish caudal fin growth. A significant (p < 0.5) development (95%) in the amputated caudal fin was detected at 12 days post-amputation. Low concentrated ZnO NPs can reduce developmental malformation. Collectively, suggested results strongly proved that lemon seed-mediated synthesized ZnO NPs had a good pathogenic barrier for bacterial infection during the external organal development for the first time.

3.
Appl Biochem Biotechnol ; 194(6): 2747-2761, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35267121

RESUMO

Endosulfan remains as a lipophilic insecticide that causes serious medical problems because of biological stability and toxicity also found in air, water, soil sediments, and foodstuffs. Henceforward, the present study reveals a novel bacterial species isolated from pesticide-contaminated soil for enhanced endosulfan degradation. Next, isolated bacterial species was characterized with biochemical assays and 16S rRNA sequencing technique. Subsequently, the optimal conditions for endosulfan biodegradation such as pH, concentration of endosulfan, and bacterial growth were estimated with non-sulfur medium (NSM). Sequentially, the amount of endosulfan and compound degradation were analyzed through thin-layer chromatography and gas chromatography/mass spectrometry. Overall, the obtained results revealed the endosulfan acting as primary carbon source for bacterial growth. From the GC-MS analysis, the metabolic products released during endosulfan degradation by Pseudomonas sp. MSCAS BT01 were compared with standard GC-MS spectra. The highest (98%) endosulfan degradation was obtained at pH 7.0. The complete endosulfan degradation was achieved at 14th day of incubation and the less toxic endosulfan diol produced was observed via GC-MS. To conclude, the pesticide-contaminated isolate Pseudomonas sp. MSCAS BT01 emerged as a promising bioremediation tool and effectively employed to degrade endosulfan from contaminated soils, sediments, and wastewaters in the days yet to come.


Assuntos
Inseticidas , Praguicidas , Poluentes do Solo , Bactérias/metabolismo , Biodegradação Ambiental , Endossulfano/química , Endossulfano/metabolismo , Inseticidas/metabolismo , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...