Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(20): e2200378, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35429094

RESUMO

A ferromagnetic metal nanolayer with a large perpendicular magnetic anisotropy, small saturation magnetization, and small magnetic damping constant is a crucial requirement for high-speed spintronic devices. Fabrication of these devices on Si/SiO2 amorphous substrates with polycrystalline structure is also strongly desired for the mass production industry. This study involves the investigation of sub-terahertz (THz) magnetization precessional motion in a newly developed material system consisting of Cu2 Sb-type MnAlGe and (Mn-Cr)AlGe films by means of an all-optical pump-probe method. These materials exhibit large perpendicular magnetic anisotropy in regions of a few nanometers in size. The pseudo-2D crystal structures are clearly observed in the high-resolution transmission electron microscopy (TEM) images for the film samples grown on thermally oxidized silicon substrates. The TEM images also show a partial substitution of Cr atoms for the Mn sites in MnAlGe. A magnetization precession frequency of 0.164 THz with a relatively small effective magnetic damping constant of 0.012 is obtained for (Mn-Cr)AlGe. Theoretical calculation infers that the modification of the total density of states by Cr substitution decreases the intrinsic magnetic damping constant of (Mn-Cr)AlGe.

2.
Sci Technol Adv Mater ; 22(1): 658-682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512176

RESUMO

To study the temperature dependence of magnetic properties of permanent magnets, methods of treating the thermal fluctuation causing the thermal activation phenomena must be established. To study finite-temperature properties quantitatively, we need atomistic energy information to calculate the canonical distribution. In the present review, we report our recent studies on the thermal properties of the Nd2Fe14B magnet and the methods of studying them. We first propose an atomistic Hamiltonian and show various thermodynamic properties, for example, the temperature dependences of the magnetization showing a spin reorientation transition, the magnetic anisotropy energy, the domain wall profiles, the anisotropy of the exchange stiffness constant, and the spectrum of ferromagnetic resonance. The effects of the dipole-dipole interaction (DDI) in large grains are also presented. In addition to these equilibrium properties, the temperature dependence of the coercivity of a single grain was studied using the stochastic Landau-Lifshitz-Gilbert equation and also by the analysis of the free energy landscape, which was obtained by Monte Carlo simulation. The upper limit of coercivity at room temperature was found to be about 3 T at room temperature. The coercivity of a polycrystalline magnet, that is, an ensemble of interactinve grains, is expected to be reduced further by the effects of the grain boundary phase, which is also studied. Surface nucleation is a key ingredient in the domain wall depinning process. Finally, we study the effect of DDI among grains and also discuss the distribution of properties of grains from the viewpoint of first-order reversal curve.

3.
Sci Rep ; 10(1): 9744, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546779

RESUMO

Mn-based alloys exhibit unique properties in the spintronics materials possessing perpendicular magnetic anisotropy (PMA) beyond the Fe and Co-based alloys. It is desired to figure out the quantum physics of PMA inherent to Mn-based alloys, which have never been reported. Here, the origin of PMA in ferrimagnetic Mn3- δ Ga ordered alloys is investigated to resolve antiparallel-coupled Mn sites using x-ray magnetic circular and linear dichroism (XMCD/XMLD) and a first-principles calculation. We found that the contribution of orbital magnetic moments in PMA is small from XMCD and that the finite quadrupole-like orbital distortion through spin-flipped electron hopping is dominant from XMLD and theoretical calculations. These findings suggest that the spin-flipped orbital quadrupole formations originate from the PMA in Mn3- δ Ga and bring the paradigm shift in the researches of PMA materials using x-ray magnetic spectroscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...