Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 1(7): 2598-2605, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36132735

RESUMO

Conceptual nanocomposite magnets (NCMs) composed of exchange-coupled hard/soft magnetic phases have been expected to show excellent magnetic performance based on simultaneous high coercivity (H c) and high saturation magnetization (M s). In our previous works, however, the H c was considerably lower than its theoretical value (H a), which prevented us from improving the performance of NCMs. Here, we show that the H c of isolated particulate L10-FePd/α-Fe NCMs is dominated by their phase segregation into core/shell-like structures versus Janus-like structures. Using first-order reversal curve (FORC) analysis, we clearly distinguished a microscopically undetectable difference in the phase-segregation structure in the NCMs, finding both efficient and inefficient exchange coupling. The nanostructurally controlled NCMs dominated by core/shell-like structure with efficient exchange coupling showed the largest energy product ((BH)max = 17.5 MGOe) in the Fe-Pd system and the highest H c/H a value (26.5%) among all NCM powders.

2.
Sci Rep ; 6: 28167, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321149

RESUMO

We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

3.
ACS Nano ; 5(4): 2806-14, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21425857

RESUMO

Nanocomposite magnets (NCMs) consisting of hard and soft magnetic phases are expected to be instrumental in overcoming the current theoretical limit of magnet performance. In this study, structural analyses were performed on L1(0)-FePd/α-Fe NCMs with various hard/soft volume fractions, which were formed by annealing Pd/γ-Fe(2)O(3) heterostructured nanoparticles and pure Pd nanoparticles. The sample with a hard/soft volume ratio of 82/18 formed by annealing at 773 K had the largest maximum energy product (BH(max) = 10.3 MGOe). In such a sample, the interface between the hard and soft phases was coherent and the phase sizes were optimized, both of which effectively induced exchange coupling. This exchange coupling was directly observed by visualizing the magnetic interaction between the hard and soft phases using a first-order reversal curve diagram, which is a valuable tool to improve the magnetic properties of NCMs.

4.
J Am Chem Soc ; 130(13): 4210-1, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18335930

RESUMO

Exchange-coupled fct-FePd/alpha-Fe nanocomposite magnets were fabricated by converting anisotropically phase-segregated Pd/gamma-Fe2O3 nanoparticles via the interfacial atom diffusion. The magnetically hard fct-FePd phases formed by the interdiffusion between alpha-Fe and fcc-Pd phases nearly preserve their sizes at the nanometer scale because they are surrounded by the alpha-Fe matrix. The VSM measurements reveal that the exchange coupling between the soft and hard phases has been realized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA