Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Environ Health ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38861673

RESUMO

The impact of air pollution is a major public health concern. However, there are few studies on the correlation between PM2.5 and respiratory infections. This study aimed to determine a link between PM2.5 and respiratory diseases among the elderly in Thailand. The data source for this study consisted of 43 electronic files from the Khon Kaen Provincial Health Office covering years 2020 and 2021 and surveyed a total of 43,534 people. The generalized linear mixed model (GLMM) was used to determine the adjusted odds ratio (AOR), and 95 % CI. We found that exposure to PM2.5 concentrations (in 10 µg m-3 increments) was associated with respiratory diseases (AOR: 3.98; 95 % CI [1.53-10.31]). Respondents who are male, aged less than 80 years, single, self-employed, or working as contractors, have a body mass index (BMI) not equal to the standard, have NCDs (hypertension, diabetes mellitus, and cardiovascular disease), are smokers, live in sub-districts where more than 5 % of the land is planted to sugarcane, or live in close proximity to a biomass power plant were at significantly higher risk of developing respiratory diseases (p<0.05). Therefore, environmental factors including ambient PM2.5 concentrations, the proportion of sugarcane plantation areas, and biomass power plants impact the occurrence of respiratory diseases among the elderly. Also, demographic factors and NCDs are serious issues. Systematic approaches to reducing PM2.5 levels in industrial and agricultural sectors are necessary for both the general population and vulnerable groups, including the elderly and NCD patients.

2.
Heliyon ; 8(6): e09572, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35711987

RESUMO

The study aimed to assess the human health risk of PM2.5-bound heavy metals from anthropogenic sources in Khon Kaen Province, Thailand between December 2020 and February 2021. According to the findings, the geometric mean concentration of PM2.5 in the university area, residential area, industrial zone, and the agricultural zone was 32.78 µg/m3, 50.25 µg/m3, 44.48 µg/m3, and 29.53 µg/m3, respectively. The results showed that the estimated human health risk assessment, in terms of non-carcinogenic risks among children and adults in an urban area (residential and university), industrial zone, and the agricultural area, was of hazard index (HI) value of >1.0 indicating a greater chance of chronic effects occurring. This study showed that exposure to PM2.5-bound heavy metal may increase the likelihood that lasting effects will result in a very high carcinogenic risk (CR) in children in residential areas, and an industrial zone with total carcinogenic risk (TCR) values of 0.23 × 10 1 , and 0.12 × 10 1 , respectively while resulting in a high TCR of 3.34 × 10 - 2 and 4.11 × 10 - 2 within the university areas and agricultural zone, respectively. In addition, health risk assessments among adults demonstrate high TCR values of 4.40 × 10 - 1 (residential area), 2.28 × 10 - 1 (industrial zone), and 7.70 × 10 - 3 (agricultural zone), thus indicating a potential health risk to adults living in these areas while the university area was very low effects on carcinogenic risk ( CR ≤ 10 - 8 ) for adults. Therefore, lowering the risk of exposure to PM2.5 via the respiratory tract, for example, wearing a mask outside is a very effective self-defense strategy for people within and around the study site. This data study strongly supports the implementation of the air pollutant emission source reduction measures control and health surveillance.

3.
Mar Pollut Bull ; 181: 113832, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716489

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are emerging environmental pollutants, having a major ecotoxicological concern to humans and many other biotas, especially aquatic animals. The physical and chemical compositions of MPs majorly determine their ecotoxicological risks. However, comprehensive knowledge about the exposure routes and toxic effects of MPs/NPs on animals and human health is not fully known. Here this review focuses on the potential exposure routes, human health impacts, and toxicity response of MPs/NPs on human health, through reviewing the literature on studies conducted in different in vitro and in vivo experiments on organisms, human cells, and the human experimental exposure models. The current literature review has highlighted ingestion, inhalation, and dermal contacts as major exposure routes of MPs/NPs. Further, oxidative stress, cytotoxicity, DNA damage, inflammation, immune response, neurotoxicity, metabolic disruption, and ultimately affecting digestive systems, immunology, respiratory systems, reproductive systems, and nervous systems, as serious health consequences.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Ecotoxicologia , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Cochrane Database Syst Rev ; 12: CD010157, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27925149

RESUMO

BACKGROUND: Respiratory hazards are common in the workplace. Depending on the hazard and exposure, the health consequences may include: mild to life-threatening illnesses from infectious agents, acute effects ranging from respiratory irritation to chronic lung conditions, or even cancer from exposure to chemicals or toxins. Use of respiratory protective equipment (RPE) is an important preventive measure in many occupational settings. RPE only offers protection when worn properly, when removed safely and when it is either replaced or maintained regularly. The effectiveness of behavioural interventions either directed at employers or organisations or directed at individual workers to promote RPE use in workers remains an important unanswered question. OBJECTIVES: To assess the effects of any behavioural intervention either directed at organisations or at individual workers on observed or self-reported RPE use in workers when compared to no intervention or an alternative intervention. SEARCH METHODS: We searched the Cochrane Work Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 07), MEDLINE (1980 to 12 August 2016), EMBASE (1980 to 20 August 2016) and CINAHL (1980 to 12 August 2016). SELECTION CRITERIA: We included randomised controlled trials (RCTs), controlled before and after (CBA) studies and interrupted time-series (ITS) comparing behavioural interventions versus no intervention or any other behavioural intervention to promote RPE use in workers. DATA COLLECTION AND ANALYSIS: Four authors independently selected relevant studies, assessed risk of bias and extracted data. We contacted investigators to clarify information. We pooled outcome data from included studies where the studies were sufficiently similar. MAIN RESULTS: We included 14 studies that evaluated the effect of training and education on RPE use, which involved 2052 participants. The included studies had been conducted with farm, healthcare, production line, office and coke oven workers as well as nursing students and people with mixed occupations. All included studies reported the effects of interventions as use of RPE, as correct use of RPE or as indirect measures of RPE use. We did not find any studies where the intervention was delivered and assessed at the whole organization level or in which the main focus was on positive or negative incentives. We rated the quality of the evidence for all comparisons as low to very low. Training versus no trainingOne CBA study in healthcare workers compared training with and without a fit test to no intervention. The study found that the rate of properly fitting respirators was not considerably different in the workers who had received training with a fit test (RR 1.17, 95% Confidence Interval (CI) 0.97 to 1.10) or training without a fit test (RR 1.16, 95% CI 0.95 to 1.42) compared to those who had no training. Two RCTs that evaluated training did not contribute to the analyses because of lack of data. Conventional training plus additions versus conventional training aloneOne cluster-randomised trial compared conventional training plus RPE demonstration versus training alone and reported no significant difference in appropriate use of RPE between the two groups (RR 1.41, 95% CI 0.96 to 2.07).One RCT compared interactive training with passive training, with an information screen, and an information book. The mean RPE performance score for the active group was not different from that of the passive group (MD 2.10, 95% CI -0.76 to 4.96). However, the active group scored significantly higher than the book group (MD 4.20, 95% CI 0.89 to 7.51) and the screen group (MD 7.00, 95% CI 4.06 to 9.94).One RCT compared computer-simulation training with conventional personal protective equipment (PPE) training but reported only results for donning and doffing full-body PPE. Education versus no educationOne RCT found that a multifaceted educational intervention increased the use of RPE (risk ratio (RR) 1.69, 95% CI 1.10 to 2.58) at three years' follow-up when compared to no intervention. However, there was no difference between intervention and control at one year's, two years' or four years' follow-up. Two RCTs did not report enough data to be included in the analysis.Four CBA studies evaluated the effectiveness of education interventions and found no effect on the frequency or correctness of RPE use, except in one study for the use of an N95 mask (RR 4.56, 95% CI 1.84 to 11.33, 1 CBA) in workers. Motivational interviewing versus traditional lecturesOne CBA study found that participants given motivational group interviewing-based safety education scored higher on a checklist measuring PPE use (MD 2.95, 95% CI 1.93 to 3.97) than control workers given traditional educational sessions. AUTHORS' CONCLUSIONS: There is very low quality evidence that behavioural interventions, namely education and training, do not have a considerable effect on the frequency or correctness of RPE use in workers. There were no studies on incentives or organisation level interventions. The included studies had methodological limitations and we therefore need further large RCTs with clearer methodology in terms of randomised sequence generation, allocation concealment and assessor blinding, in order to evaluate the effectiveness of behavioural interventions for improving the use of RPE at both organisational and individual levels. In addition, further studies should consider some of the barriers to the successful use of RPE, such as experience of health risk, types of RPE and the employer's attitude to RPE use.


Assuntos
Promoção da Saúde/métodos , Dispositivos de Proteção Respiratória/estatística & dados numéricos , Local de Trabalho , Estudos Controlados Antes e Depois , Fazendeiros , Pessoal de Saúde , Humanos , Análise de Séries Temporais Interrompida , Entrevista Motivacional , Ocupações , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Asia Pac J Public Health ; 23(6): 967-79, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22144714

RESUMO

There has been very limited information regarding bagasse exposure among workers in sugar industries as well as on health outcomes. The authors determined the occupational exposure of sugar industry workers in Khon Kaen to airborne bagasse dust. The size of the bagasse dust ranged from 0.08 to 9 µm with the highest size concentration of 2.1 to 4.7 µm. The most common size had a geometric mean diameter of 5.2 µm, with a mass concentration of 6.89 mg/m(3)/log µm. The highest mean values of inhalable and respirable dust were found to be 9.29 mg/m(3) from February to April in bagasse storage, 5.12 mg/m(3) from May to September, and 4.12 mg/m(3) from October to January. Inhalable dust concentrations were 0.33, 0.47, and 0.41 mg/m(3), respectively. Workers are likely to be exposed to high concentrations of bagasse dust and are at risk of respiratory diseases. Preventive measures, both in the form of engineering designs and personal protective devices, should be implemented.


Assuntos
Poeira/análise , Indústrias , Exposição por Inalação/análise , Exposição Ocupacional/análise , Tamanho da Partícula , Celulose/análise , Humanos , Projetos Piloto , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...