Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20894, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686749

RESUMO

Earth's surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean ([Formula: see text] [Formula: see text] [Formula: see text][Formula: see text], where [Formula: see text] is the oxygen fugacity, [Formula: see text] is [Formula: see text], and [Formula: see text] is [Formula: see text] at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.

2.
Angew Chem Int Ed Engl ; 59(22): 8464-8470, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32129542

RESUMO

Shimalactones A and B are neuritogenic polyketides possessing characteristic oxabicyclo[2.2.1]heptane and bicyclo[4.2.0]octadiene ring systems that are produced by the marine fungus Emericella variecolor GF10. We identified a candidate biosynthetic gene cluster and conducted heterologous expression analysis. Expression of ShmA polyketide synthase in Aspergillus oryzae resulted in the production of preshimalactone. Aspergillus oryzae and Saccharomyces cerevisiae transformants expressing ShmA and ShmB produced shimalactones A and B, thus suggesting that the double bicyclo-ring formation reactions proceed non-enzymatically from preshimalactone epoxide. DFT calculations strongly support the idea that oxabicyclo-ring formation and 8π-6π electrocyclization proceed spontaneously after opening of the preshimalactone epoxide ring through protonation. We confirmed the formation of preshimalactone epoxide in vitro, followed by its non-enzymatic conversion to shimalactones in the dark.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Lactonas/química , Lactonas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Biotransformação , Ciclização , Família Multigênica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...