Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(1): 458-65, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26615959

RESUMO

The electronic structures of nitrogen species incorporated into highly oriented pyrolytic graphite (HOPG), prepared by low energy (200 eV) nitrogen ion sputtering and subsequent annealing at 1000 K, were investigated by X-ray photoelectron spectroscopy (XPS), angle-dependent X-ray absorption spectroscopy (XAS), and Raman spectroscopy. An additional peak was observed at higher binding energy of 401.9 eV than 400.9 eV for graphitic1 N (graphitic N in the basal plane) in N 1s XPS, where graphitic2 N (graphitic N in the zigzag edge and/or vacancy sites) has been theoretically expected to appear. N 1s XPS showed that graphitic1 N and graphitic2 N were preferably incorporated under low nitrogen content doping conditions (8 × 10(13) ions cm(-2)), while pyridinic N and graphitic1 N were dominantly observed under high nitrogen content doping conditions. In addition, angle-dependent N 1s XAS showed that the graphitic N and pyridinic N atoms were incorporated into the basal plane of HOPG and thus were highly oriented. Furthermore, Raman spectroscopy revealed that low energy sputtering resulted in almost no fraction of the disturbed graphite surface layers under the lowest nitrogen doping condition. The suitable nitrogen doping condition was discovered for realizing the well-controlled nitrogen doped HOPG. The electrochemical properties for the oxygen reduction reaction of these samples in acidic solution were examined and discussed.

2.
Sci Rep ; 5: 16412, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26549618

RESUMO

Under perpendicular external magnetic fields, two-dimensional carriers exhibit Landau levels (LLs). However, it has recently been reported that LLs have been observed on graphene and graphite surfaces without external magnetic fields being applied. These anomalous LLs have been ascribed primarily to a strain of graphene sheets, leading to in-plane hopping modulation of electrons. Here, we report the observation of the LLs of massive Dirac fermions on atomically flat areas of a nitrogen-doped graphite surface in the absence of external magnetic fields. The corresponding magnetic fields were estimated to be as much as approximately 100 T. The generation of the LLs at the area with negligible strain can be explained by inequivalent hopping of π electrons that takes place at the perimeter of high-potential domains surrounded by positively charged substituted graphitic-nitrogen atoms.

3.
J Chem Phys ; 134(20): 204710, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21639470

RESUMO

We have investigated the effect of co-absorbed CO and reaction temperature on the angular distribution of N(2) desorption by N(2)O decomposition under the steady state of N(2)O-CO reaction on Rh(110). Spatial distributions of desorbing product N(2) emission have been measured at various surface temperatures and CO coverages. The decomposed N(2) collimates at 48°-61° off normal in the parallel plane to [001] and [110] directions, indicating that adsorbed N(2)O just before the decomposition is oriented along the [001] direction. Although the inclined and collimated N(2) desorption is always observed at any steady-state CO coverage and reaction temperature, the shape of the collimated N(2) distribution varied dependent on the co-adsorbed CO coverage. The distribution becomes sharp and shifts toward the surface normal direction with increasing CO coverage. These effects of adsorbed CO on the angular distribution of N(2) are interpreted by the collision of desorbed N(2) with co-adsorbed CO.

4.
J Chem Phys ; 132(13): 134704, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20387951

RESUMO

The angle resolved intensity and velocity distributions of desorbing product N(2) were measured under a steady-state N(2)O+CO reaction on Rh(110) by cross-correlation time-of-flight techniques. Three-dimensional intensity distribution of N(2) has been constructed from the angle resolved intensity distributions in the planes along different crystal azimuths. N(2) desorption has been found to split into two lobes sharply collimated along 50-63 degrees off normal toward [001] and [001] directions, suggesting that N(2)O is decomposed through the transition state of N(2)O adsorbed with the molecular axis parallel to the [001] direction. From the velocity distribution analysis, each desorption lobe is found to consist of two components with different peak angles, ca. 50 degrees and 74 degrees off normal. In both lobe cases, desorption components have been interpreted by the model of two adsorption sites; N(2)O at on-top site emits N(2) to 50 degrees and that at bridge site emits to 74 degrees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...