Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 3(2): e1600446, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28246631

RESUMO

Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.

2.
Appl Opt ; 55(6): 1351-5, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26906588

RESUMO

Liquid nitrogen (LN2) behavior on the surface of excited Yb(3+):YAG is investigated using fluorometry. From the time-resolved temperature variations and integrated fluorescence spectra intensity on this directly cooled Yb(3+):YAG surface, we observe a phase transition of LN2 from nucleate boiling to film boiling. As a result of this pool boiling, good beam quality should occur when the temperature and heat flux at an excited surface of Yb(3+):YAG are below 95 K and 15.8 W/cm2, respectively. That is, the LN2 should remain in a steady state of nucleate boiling to produce good beam quality using pool boiling.

3.
Appl Opt ; 53(9): 1964-9, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24663477

RESUMO

We have studied the amplification characteristics of a cryogenically cooled Yb³âº:YAG total-reflection active-mirror (TRAM) ceramic laser including wavefront distortion, birefringence loss, small signal gain (SSG), and temperature rise for developing high-performance master oscillator power amplifier (MOPA) systems. A 0.6 mm thick Yb³âº:YAG ceramic sample was used, and maximum pump intensity ~10 kW/cm² was reached. The transmitted wavefront was measured by using a Shack-Hartmann wavefront sensor, and we evaluated the thermal lens focal length and Strehl ratio for different pump conditions. We have also observed a butterfly-like leakage profile of thermally induced birefringence loss at the maximum pump intensity. From SSG measurements, we obtained moderate laser gain of G=3 for one bounce with a near aberration-free wavefront. Gain calculations, which included also temperature dependence of the emission cross section and reabsorption of Yb³âº:YAG, were in good agreement with the experiments. These experimental results will be useful as benchmark data for numerical simulations of temperature distribution in TRAM and for designing multikilowatt-class high-performance MOPA systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...