Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695719

RESUMO

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Assuntos
Microglia , Receptores de GABA-A , Sono de Ondas Lentas , Sinapses , Fator de Necrose Tumoral alfa , Animais , Masculino , Camundongos , Consolidação da Memória , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais , Sono/fisiologia , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Front Syst Neurosci ; 17: 1176668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229350

RESUMO

Fear learning is mediated by a large network of brain structures and the understanding of their roles and interactions is constantly progressing. There is a multitude of anatomical and behavioral evidence on the interconnection of the cerebellar nuclei to other structures in the fear network. Regarding the cerebellar nuclei, we focus on the coupling of the cerebellar fastigial nucleus to the fear network and the relation of the cerebellar dentate nucleus to the ventral tegmental area. Many of the fear network structures that receive direct projections from the cerebellar nuclei are playing a role in fear expression or in fear learning and fear extinction learning. We propose that the cerebellum, via its projections to the limbic system, acts as a modulator of fear learning and extinction learning, using prediction-error signaling and regulation of fear related thalamo-cortical oscillations.

3.
Nat Commun ; 14(1): 1508, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932068

RESUMO

Fear extinction is a form of inhibitory learning that suppresses the expression of aversive memories and plays a key role in the recovery of anxiety and trauma-related disorders. Here, using male mice, we identify a cerebello-thalamo-cortical pathway regulating fear extinction. The cerebellar fastigial nucleus (FN) projects to the lateral subregion of the mediodorsal thalamic nucleus (MD), which is reciprocally connected with the dorsomedial prefrontal cortex (dmPFC). The inhibition of FN inputs to MD in male mice impairs fear extinction in animals with high fear responses and increases the bursting of MD neurons, a firing pattern known to prevent extinction learning. Indeed, this MD bursting is followed by high levels of the dmPFC 4 Hz oscillations causally associated with fear responses during fear extinction, and the inhibition of FN-MD neurons increases the coherence of MD bursts and oscillations with dmPFC 4 Hz oscillations. Overall, these findings reveal a regulation of fear-related thalamo-cortical dynamics by the cerebellum and its contribution to fear extinction.


Assuntos
Extinção Psicológica , Medo , Camundongos , Masculino , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Cerebelo
4.
Elife ; 112022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699413

RESUMO

Dystonia is often associated with functional alterations in the cerebello-thalamic pathways, which have been proposed to contribute to the disorder by propagating pathological firing patterns to the forebrain. Here, we examined the function of the cerebello-thalamic pathways in a model of DYT25 dystonia. DYT25 (Gnal+/-) mice carry a heterozygous knockout mutation of the Gnal gene, which notably disrupts striatal function, and systemic or striatal administration of oxotremorine to these mice triggers dystonic symptoms. Our results reveal an increased cerebello-thalamic excitability in the presymptomatic state. Following the first dystonic episode, Gnal+/- mice in the asymptomatic state exhibit a further increase of the cerebello-thalamo-cortical excitability, which is maintained after θ-burst stimulations of the cerebellum. When administered in the symptomatic state induced by a cholinergic activation, these stimulations decreased the cerebello-thalamic excitability and reduced dystonic symptoms. In agreement with dystonia being a multiregional circuit disorder, our results suggest that the increased cerebello-thalamic excitability constitutes an early endophenotype, and that the cerebellum is a gateway for corrective therapies via the depression of cerebello-thalamic pathways.


Assuntos
Distonia , Distúrbios Distônicos , Animais , Cerebelo , Modelos Animais de Doenças , Distonia/genética , Distúrbios Distônicos/genética , Camundongos , Vias Neurais , Tálamo
5.
Cell Rep ; 38(8): 110415, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196488

RESUMO

NMDA receptors (NMDARs) have been proposed to control single-neuron computations in vivo. However, whether specific mechanisms regulate the function of such receptors and modulate input-output transformations performed by cortical neurons under in vivo-like conditions is understudied. Here, we report that in layer 2/3 pyramidal neurons (L2/3 PNs), repeated synaptic stimulation results in an activity-dependent decrease in NMDAR function by vesicular zinc. Such a mechanism shifts the threshold for dendritic non-linearities and strongly reduces LTP. Modulation of NMDARs is cell and pathway specific, being present selectively in L2/3-L2/3 connections but absent in inputs originating from L4 neurons. Numerical simulations highlight that activity-dependent modulation of NMDARs influences dendritic computations, endowing L2/3 PN dendrites with the ability to sustain non-linear integrations constant across different regimes of synaptic activity like those found in vivo. Our results unveil vesicular zinc as an important endogenous modulator of dendritic function in cortical PNs.


Assuntos
Dendritos , Neurônios , Receptores de N-Metil-D-Aspartato , Sinapses , Zinco , Dendritos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Zinco/metabolismo
6.
Nat Commun ; 11(1): 5207, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060630

RESUMO

Fear conditioning is a form of associative learning that is known to involve different brain areas, notably the amygdala, the prefrontal cortex and the periaqueductal grey (PAG). Here, we describe the functional role of pathways that link the cerebellum with the fear network. We found that the cerebellar fastigial nucleus (FN) sends glutamatergic projections to vlPAG that synapse onto glutamatergic and GABAergic vlPAG neurons. Chemogenetic and optogenetic manipulations revealed that the FN-vlPAG pathway controls bi-directionally the strength of the fear memories, indicating an important role in the association of the conditioned and unconditioned stimuli, a function consistent with vlPAG encoding of fear prediction error. Moreover, FN-vlPAG projections also modulate extinction learning. We also found a FN-parafascicular thalamus pathway, which may relay cerebellar influence to the amygdala and modulates anxiety behaviors. Overall, our results reveal multiple contributions of the cerebellum to the emotional system.


Assuntos
Sistema Nervoso Central/fisiologia , Medo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Sistema Nervoso Central/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...