Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(9): 1985-1992, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37651626

RESUMO

We previously reported potent ligands and inhibitors of Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS), a promising target for antituberculosis drug development (Schumann et al., ACS Chem Biol. 2021, 16, 2339-2347); here, the unconventional origin of the fragment compound they were derived from is described for the first time. Compound 1 (9b-hydroxy-6b,7,8,9,9a,9b-hexahydrocyclopenta[3,4]cyclobuta[1,2-c]chromen-6(6aH)-one), identified by an in silico fragment screen, was subsequently shown by surface plasmon resonance to have dose-responsive binding (KD = 0.6 mM). Clear electron density was revealed in the DAPA substrate binding pocket when 1 was soaked into MtDTBS crystals, but the density was inconsistent with the structure of 1. Here, we show that the lactone of 1 hydrolyzes to a carboxylic acid (2) under basic conditions, including those of the crystallography soak, with a subsequent ring opening of the component cyclobutane ring forming a cyclopentylacetic acid (3). Crystals soaked directly with authentic 3 produced an electron density that matched that of crystals soaked with presumed 1, confirming the identity of the bound ligand. The synthetic utility of fortuitously formed 3 enabled the subsequent compound development of nanomolar inhibitors. Our findings represent an example of chemical modification within drug discovery assays and demonstrate the value of high-resolution structural data in the fragment hit validation process.


Assuntos
Carbono-Nitrogênio Ligases , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Bioensaio
2.
Protein Sci ; 32(6): e4654, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165541

RESUMO

Methylenetetrahydrofolate reductase (MTHFR) is a key metabolic enzyme in colonization and virulence of Neisseria meningitidis, a causative agent of meningococcal diseases. Here, the biochemical and structural properties of MTHFR from a virulent strain of N. meningitidis serogroup B (NmMTHFR) were characterized. Unlike other orthologs, NmMTHFR functions as a unique homohexamer, composed of three homo-dimerization partners, as shown in our 2.7 Å resolution crystal structure. Six active sites were formed solely within monomers and located away from the oligomerization interfaces. Flavin adenine dinucleotide cofactor formed hydrogen bonds with conserved sidechains, positioning its isoalloxazine ring adjacent to the overlapping binding sites of nicotinamide adenine dinucleotide (NADH) coenzyme and CH2 -H4 folate substrate. NmMTHFR utilized NADH (Km = 44 µM) as an electron donor in the NAD(P)H-CH2 -H4 folate oxidoreductase assay, but not nicotinamide adenine dinucleotide phosphate (NADPH) which is the donor required in human MTHFR. In silico analysis and mutagenesis studies highlighted the significant difference in orientation of helix α7A (Phe215-Thr225) with that in the human enzyme. The extended sidechain of Met221 on helix α7A plays a role in stabilizing the folded structure of NADH in the hydrophobic box. This supports the NADH specificity by restricting the phosphate group of NADPH that causes steric clashes with Glu26. The movement of Met221 sidechain allows the CH2 -H4 folate substrate to bind. The unique topology of its NADH and CH2 -H4 folate binding pockets makes NmMTHFR a promising drug target for the development of new antimicrobial agents that may possess reduced off-target side effects.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Neisseria meningitidis , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , NAD/química , NADP , Modelos Moleculares , Ácido Fólico/química , Ácido Fólico/metabolismo , Neisseria meningitidis/metabolismo , Adenina
3.
ACS Chem Biol ; 16(11): 2339-2347, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34533923

RESUMO

Mycobacterium tuberculosis dethiobiotin synthase (MtDTBS) is a crucial enzyme involved in the biosynthesis of biotin in the causative agent of tuberculosis, M. tuberculosis. Here, we report a binder of MtDTBS, cyclopentylacetic acid 2 (KD = 3.4 ± 0.4 mM), identified via in silico screening. X-ray crystallography showed that 2 binds in the 7,8-diaminopelargonic acid (DAPA) pocket of MtDTBS. Appending an acidic group to the para-position of the aromatic ring of the scaffold revealed compounds 4c and 4d as more potent binders, with KD = 19 ± 5 and 17 ± 1 µM, respectively. Further optimization identified tetrazole 7a as a particularly potent binder (KD = 57 ± 5 nM) and inhibitor (Ki = 5 ± 1 µM) of MtDTBS. Our findings highlight the first reported inhibitors of MtDTBS and serve as a platform for the further development of potent inhibitors and novel therapeutics for the treatment of tuberculosis.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Antituberculosos/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Cristalografia por Raios X , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/metabolismo , Estrutura Molecular , Ligação Proteica
4.
Microbiol Spectr ; 4(2)2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27227307

RESUMO

Biotin is an essential cofactor for enzymes present in key metabolic pathways such as fatty acid biosynthesis, replenishment of the tricarboxylic acid cycle, and amino acid metabolism. Biotin is synthesized de novo in microorganisms, plants, and fungi, but this metabolic activity is absent in mammals, making biotin biosynthesis an attractive target for antibiotic discovery. In particular, biotin biosynthesis plays important metabolic roles as the sole source of biotin in all stages of the Mycobacterium tuberculosis life cycle due to the lack of a transporter for scavenging exogenous biotin. Biotin is intimately associated with lipid synthesis where the products form key components of the mycobacterial cell membrane that are critical for bacterial survival and pathogenesis. In this review we discuss the central role of biotin in bacterial physiology and highlight studies that demonstrate the importance of its biosynthesis for virulence. The structural biology of the known biotin synthetic enzymes is described alongside studies using structure-guided design, phenotypic screening, and fragment-based approaches to drug discovery as routes to new antituberculosis agents.


Assuntos
Antituberculosos/farmacologia , Biotina/fisiologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Animais , Resistência Microbiana a Medicamentos , Humanos , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Virulência
5.
Tuberculosis (Edinb) ; 95(3): 259-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25801336

RESUMO

Dethiobiotin synthetase (DTBS) plays a crucial role in biotin biosynthesis in microorganisms, fungi, and plants. Due to its importance in bacterial pathogenesis, and the absence of a human homologue, DTBS is a promising target for the development of new antibacterials desperately needed to combat antibiotic resistance. Here we report the first X-ray structure of DTBS from Mycobacterium tuberculosis (MtDTBS) bound to a nucleotide triphosphate (CTP). The nucleoside base is stabilized in its pocket through hydrogen-bonding interactions with the protein backbone, rather than amino acid side chains. This resulted in the unexpected finding that MtDTBS could utilise ATP, CTP, GTP, ITP, TTP, or UTP with similar Km and kcat values, although the enzyme had the highest affinity for CTP in competitive binding and surface plasmon resonance assays. This is in contrast to other DTBS homologues that preferentially bind ATP primarily through hydrogen-bonds between the purine base and the carboxamide side chain of a key asparagine. Mutational analysis performed alongside in silico experiments revealed a gate-keeper role for Asn175 in Escherichia coli DTBS that excludes binding of other nucleotide triphosphates. Here we provide evidence to show that MtDTBS has a broad nucleotide specificity due to the absence of the gate-keeper residue.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Mycobacterium tuberculosis/enzimologia , Nucleotídeos/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Ligação de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida , Mutação , Mycobacterium tuberculosis/genética , Conformação Proteica , Especificidade por Substrato
6.
PLoS One ; 6(10): e26792, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046359

RESUMO

ADIPOQ, encoding adiponectin, is a candidate gene for type 2 diabetes (T2D) identified by genome-wide linkage analyses with supporting evidence showing the protein function in sensitizing insulin actions. In an endeavor to characterize candidate genes causing T2D in Thai patients, we identified 10 novel ADIPOQ variations, several of which were non-synonymous variations observed only in the patients. To examine the impact of these non-synonymous variations on adiponectin structure and biochemical characteristics, we conducted a structural analysis of the wild-type and variant proteins by in silico modeling and further characterized biochemical properties of the variants with predicted structural abnormalities from the modeling by molecular and biochemical studies. The recombinant plasmids containing wild-type and variant ADIPOQ cDNAs derived from the variations identified by our study (R55H, R112H, and R131H) and previous work (G90S and R112C) were constructed and transiently expressed and co-expressed in cultured HEK293T cells to investigate their oligomerization, interaction, and secretion. We found that the novel R55H variant impaired protein multimerization but it did not exert the effect over the co-expressed wild-type protein while novel R131H variant impaired protein secretion and also affected the co-expressed wild-type protein in a dominant negative fashion. The R131H variant could traffic from the endoplasmic reticulum to the Golgi, trans-Golgi network, and early endosome but could not be secreted. The R131H variant was likely to be degraded through the lysosomal system and inhibition of its degradation rescued the variant protein from secretion defect. We have shown the possibility of using in silico modeling for predicting the effect of amino acid substitution on adiponectin oligomerization. This is also the first report that demonstrates a dominant negative effect of the R131H variant on protein secretion and the possibility of using protein degradation inhibitors as therapeutic agents in the patients carrying adiponectin variants with secretion defect.


Assuntos
Adiponectina/genética , Diabetes Mellitus Tipo 2/genética , Variação Genética , Multimerização Proteica/genética , Adiponectina/química , Adiponectina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Simulação por Computador , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteólise/efeitos dos fármacos , Alinhamento de Sequência , Tailândia
7.
Protein Cell ; 2(9): 691-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21976058

RESUMO

Biotin is an important micronutrient that serves as an essential enzyme cofactor. Bacteria obtain biotin either through de novo synthesis or by active uptake from exogenous sources. Mycobacteria are unusual amongst bacteria in that their primary source of biotin is through de novo synthesis. Here we review the importance of biotin biosynthesis in the lifecycle of Mycobacteria. Genetic screens designed to identify key metabolic processes have highlighted a role for the biotin biosynthesis in bacilli growth, infection and survival during the latency phase. These studies help to establish the biotin biosynthetic pathway as a potential drug target for new anti-tuberculosis agents.


Assuntos
Biotina/biossíntese , Genoma Bacteriano , Mycobacterium tuberculosis/fisiologia , Carbono-Carbono Ligases/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Coenzimas/metabolismo , Ácidos Graxos/biossíntese , Genes Bacterianos , Redes e Vias Metabólicas , Estrutura Molecular , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Virulência
8.
J Biomed Sci ; 17: 68, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20735839

RESUMO

BACKGROUND: The dengue virus two-component protease NS2B/NS3 mediates processing of the viral polyprotein precursor and is therefore an important determinant of virus replication. The enzyme is now intensively studied with a view to the structure-based development of antiviral inhibitors. Although 3-dimensional structures have now been elucidated for a number of flaviviral proteases, enzyme-substrate interactions are characterized only to a limited extend. The high selectivity of the dengue virus protease for the polyprotein precursor offers the distinct advantage of designing inhibitors with exquisite specificity for the viral enzyme. To identify important determinants of substrate binding and catalysis in the active site of the dengue virus NS3 protease, nine residues, L115, D129, G133, T134, Y150, G151, N152, S163 and I165, located within the S1 and S2 pockets of the enzyme were targeted by alanine substitution mutagenesis and effects on enzyme activity were fluorometrically assayed. METHODS: Alanine substitutions were introduced by site-directed mutagenesis at residues L115, D129, G133, T134, Y150, G151, N152, S163 and I165 and recombinant proteins were purified from overexpressing E. coli. Effects of these substitutions on enzymatic activity of the NS3 protease were assayed by fluorescence release from the synthetic model substrate GRR-amc and kinetic parameters Km, kcat and kcat/Km were determined. RESULTS: Kinetic data for mutant derivatives in the active site of the dengue virus NS3 protease were essentially in agreement with a functional role of the selected residues for substrate binding and/or catalysis. Only the L115A mutant displayed activity comparable to the wild-type enzyme, whereas mutation of residues Y150 and G151 to alanine completely abrogated enzyme activity. A G133A mutant had an approximately 10-fold reduced catalytic efficiency thus suggesting a critical role for this residue seemingly as part of the oxyanion binding hole. CONCLUSIONS: Kinetic data obtained for mutants in the NS3 protease have confirmed predictions for the conformation of the active site S1 and S2 pockets based on earlier observations. The data presented herein will be useful to further explore structure-activity relationships of the flaviviral proteases important for the structure-guided design of novel antiviral therapeutics.


Assuntos
Domínio Catalítico/genética , Vírus da Dengue/enzimologia , Complexos Multiproteicos/genética , Conformação Proteica , Serina Endopeptidases/genética , Proteínas não Estruturais Virais/genética , Fluorometria , Cinética , Mutagênese Sítio-Dirigida/métodos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...