Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parasit Dis ; 47(4): 778-786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38009154

RESUMO

Toxoplasma gondii is a worldwide opportunistic protozoan causing life-threatening infection in immunocompromised patients, while frequently asymptomatic in immunocompetent individuals. The current study aimed to detect T. gondii; serologically and molecularly in ß. thalassemia patients and evaluate the association of infection with some hematological parameters in these patients. Blood samples were collected from 100 ß. thalassemia patients. Serological diagnosis of T. gondii using ELISA for IgG and IgM antibodies was performed. Molecular diagnosis by Real-Time (RE) PCR was performed using specifically designed primers amplifying 389 bp fragments of Toxoplasma genome. 45 patients (45%) had anti-Toxoplasma IgG antibodies with no detectable IgM antibodies while both anti-Toxoplasma IgM and IgG antibodies were noticed in 10 patients (10%). IgM only antibodies were discovered in two cases (2%). The total seropositivity rate among patients was 57%. RE PCR analysis revealed Toxoplasma DNA in 20% out of 100 patients. PCR and serological examination showed slight agreement. A statistically significant relation was observed between the results of IgG and IgM ELISA and PCR for the detection of T. gondii infection among patients with ß. thalassemia. None of the studied risk factors (age, gender, contact with cats, consumption of undercooked meat) or hematological parameters (ESR, anemia degree, ferritin level, type of blood transfusion, spleen status) showed statistically significant association with Toxoplasma infection. It can be concluded that patients with thalassemia have a high risk of infection with T. gondii. RE PCR should be used as a diagnostic method in association with serology especially in immunocompromised patients to increase sensitivity.

2.
J Food Biochem ; 44(8): e13313, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32497284

RESUMO

The present study was to investigate the effective role of renewable sources of Ca+2 from eggshell (ES) with different doses to restrict obesity disorders. Rats were classified as follows, G1 : normal diet for 26 weeks; G2 : high-fat diet (HFD) for 26 weeks; G3 , G4 , and G5 were supplemented with HFD for 16 weeks and treated with 7.2 g Ca+2 ES/Kg rat chow, 18 g Ca+2 ES/Kg rat chow, and 2% diet containing fat (DCF), respectively, for the remaining 10 weeks. Results revealed a significant effect of the low dose of Ca+2 supplement in form of ES than high dose and 2% DCF; on basis of anthropometric parameters, lipid, leptin, adiponectin, thyroid hormones, Ca+2 , 25-hydroxyl vitamin-D, and oxidative and inflammatory parameters were regulated. Results were confirmed with the histopathological study. Therefore, it was concluded that Ca+2 supplementation can be used as a beneficial source for obesity management with anticholesterol actions. PRACTICAL APPLICATIONS: Obesity represented public health hazards. The eggshell is one of the waste products that contain a high percentage of Ca+2 . The current data exposed using a low dose of ES as a new source of Ca+2 supplement for treatment of HFD rats leads to significant enhancement of lipid profiles, liver enzymes, kidney functions, leptin, adiponectin, Ca+2 , 25(OH)-D, TSH, fT4, and PTH levels. Also, there was a reduction in weight gain, Bwt, BMI, BG, insulin, and HOMA-IR. Moreover, the oxidant-pro-oxidant system was improved in both hepatic and adipose tissues where NO and TBARS concentrations were diminished, and SOD specific activity was elevated. Additionally, TNF-α and ADAM17 expression were downregulated. Hence, it was concluded that there was good evidence that diets supplemented with ES were associated with the reduction of obesity complications especially regulating fat processing and storage in the body.


Assuntos
Cálcio , Manejo da Obesidade , Animais , Suplementos Nutricionais , Casca de Ovo , Obesidade/tratamento farmacológico , Ratos
3.
Am J Physiol Renal Physiol ; 317(2): F343-F360, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091126

RESUMO

Polycystic kidney disease (PKD) is characterized by slowly expanding renal cysts that damage the kidney, typically resulting in renal failure by the fifth decade. The most common cause of death in these patients, however, is cardiovascular disease. Expanding cysts in PKD induce chronic kidney injury that is accompanied by immune cell infiltration, including macrophages, which we and others have shown can promote disease progression in PKD mouse models. Here, we show that monocyte chemoattractant protein-1 [MCP-1/chemokine (C-C motif) ligand 2 (CCL2)] is responsible for the majority of monocyte chemoattractant activity produced by renal PKD cells from both mice and humans. To test whether the absence of MCP-1 lowers renal macrophage concentration and slows disease progression, we generated genetic knockout (KO) of MCP-1 in a mouse model of PKD [congenital polycystic kidney (cpk) mice]. Cpk mice are born with rapidly expanding renal cysts, accompanied by a decline in kidney function and death by postnatal day 21. Here, we report that KO of MCP-1 in these mice increased survival, with some mice living past 3 mo. Surprisingly, however, there was no significant difference in renal macrophage concentration, nor was there improvement in cystic disease or kidney function. Examination of mice revealed cardiac hypertrophy in cpk mice, and measurement of cardiac electrical activity via ECG revealed repolarization abnormalities. MCP-1 KO did not affect the number of cardiac macrophages, nor did it alleviate the cardiac aberrancies. However, MCP-1 KO did prevent the development of pulmonary edema, which occurred in cpk mice, and promoted decreased resting heart rate and increased heart rate variability in both cpk and noncystic mice. These data suggest that in this mouse model of PKD, MCP-1 altered cardiac/pulmonary function and promoted death outside of its role as a macrophage chemoattractant.


Assuntos
Arritmias Cardíacas/metabolismo , Cardiomegalia/metabolismo , Quimiocina CCL2/metabolismo , Rim/metabolismo , Pulmão/metabolismo , Miocárdio/metabolismo , Doenças Renais Policísticas/metabolismo , Edema Pulmonar/metabolismo , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Quimiocina CCL2/deficiência , Quimiocina CCL2/genética , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Rim/patologia , Rim/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/fisiopatologia , Edema Pulmonar/patologia , Edema Pulmonar/fisiopatologia , Edema Pulmonar/prevenção & controle , Fatores de Tempo
4.
Dis Model Mech ; 9(9): 1051-61, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491076

RESUMO

Polycystic kidney disease (PKD) is characterized by slow expansion of fluid-filled cysts derived from tubules within the kidney. Cystic expansion results in injury to surrounding parenchyma and leads to inflammation, scarring and ultimately loss of renal function. Macrophages are a key element in this process, promoting cyst epithelial cell proliferation, cyst expansion and disease progression. Previously, we have shown that the microenvironment established by cystic epithelial cells can 'program' macrophages, inducing M2-like macrophage polarization that is characterized by expression of markers that include Arg1 and Il10 Here, we functionally characterize these macrophages, demonstrating that their differentiation enhances their ability to promote cyst cell proliferation. This observation indicates a model of reciprocal pathological interactions between cysts and the innate immune system: cyst epithelial cells promote macrophage polarization to a phenotype that, in turn, is especially efficient in promoting cyst cell proliferation and cyst growth. To better understand the genesis of this macrophage phenotype, we examined the role of IL-10, a regulatory cytokine shown to be important for macrophage-stimulated tissue repair in other settings. Herein, we show that the acquisition of the pathological macrophage phenotype requires IL-10 secretion by the macrophages. Further, we demonstrate a requirement for IL-10-dependent autocrine activation of the STAT3 pathway. These data suggest that the IL-10 pathway in macrophages plays an essential role in the pathological relationship between cysts and the innate immune system in PKD, and thus could be a potential therapeutic target.


Assuntos
Comunicação Autócrina , Diferenciação Celular , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Doenças Renais Policísticas/patologia , Fator de Transcrição STAT3/metabolismo , Comunicação Autócrina/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Líquido Cístico/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Fenótipo , Doenças Renais Policísticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
J Cell Sci ; 126(Pt 11): 2446-58, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23572509

RESUMO

In this report, we have shown that miR146b promotes the maintenance of pregnancy-derived mammary luminal alveolar progenitors. MiR146b expression was significantly higher in the mammary glands of pregnant and lactating mice than in virgin mice. Furthermore, miR146b levels were significantly higher in mouse mammary glands exposed to the sex hormones, estrogen and progesterone, compared with those of untreated control animals. Pregnancy-derived primary mouse mammary epithelial cells in which miR146b was knocked down showed a significant reduction in the number of hollow acinar organoid structures formed on three-dimensional Matrigel and in ß-casein expression. This demonstrates that miR146b promotes the maintenance of pregnancy-derived mammary luminal alveolar progenitors. It has been shown that mouse mammary luminal progenitors give rise to hollow organoid structures, whereas solid organoid structures are derived from stem cells. Among several miR146b targets, miR146b knockdown resulted in preferential STAT3ß overexpression. In the primary mouse mammary epithelial cells, overexpression of STAT3ß isoform caused mammary epithelial cell death and a significant reduction in ß-casein mRNA expression. Therefore, we conclude that during pregnancy miR146b is involved in luminal alveolar progenitor cell maintenance, at least partially, by regulating STAT3ß.


Assuntos
Glândulas Mamárias Animais/metabolismo , MicroRNAs/metabolismo , Gravidez/fisiologia , Células-Tronco/metabolismo , Animais , Caseínas/biossíntese , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Lactação/fisiologia , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Progesterona/genética , Progesterona/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células-Tronco/citologia
6.
Kidney Int ; 83(5): 855-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423256

RESUMO

Renal M2-like macrophages have critical roles in tissue repair, stimulating tubule cell proliferation and, if they remain, fibrosis. M2-like macrophages have also been implicated in promoting cyst expansion in mouse models of autosomal dominant polycystic kidney disease (ADPKD). While renal macrophages have been documented in human ADPKD, there are no studies in autosomal recessive polycystic kidney disease (ARPKD). Here we evaluated the specific phenotype of renal macrophages and their disease-impacting effects on cystic epithelial cells. We found an abundance of M2-like macrophages in the kidneys of patients with either ADPKD or ARPKD and in the cystic kidneys of cpk mice, a model of ARPKD. Renal epithelial cells from either human ADPKD cysts or noncystic human kidneys promote differentiation of naive macrophages to a distinct M2-like phenotype in culture. Reciprocally, these immune cells stimulate the proliferation of renal tubule cells and microcyst formation in vitro. Further, depletion of macrophages from cpk mice indicated that macrophages contribute to PKD progression regardless of the genetic etiology. Thus, M2-like macrophages are two-pronged progression factors in PKD, promoting cyst cell proliferation, cyst growth, and fibrosis. Agents that block the emergence of these cells or their effects in the cystic kidney may be effective therapies for slowing PKD progression.


Assuntos
Células Epiteliais/imunologia , Rim/imunologia , Macrófagos/imunologia , Rim Policístico Autossômico Dominante/imunologia , Rim Policístico Autossômico Recessivo/imunologia , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Humanos , Rim/metabolismo , Rim/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Comunicação Parácrina , Fenótipo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia
7.
Development ; 138(4): 715-24, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21266407

RESUMO

The cellular response to the Drosophila BMP 2/4-like ligand Decapentaplegic (DPP) serves as one of the best-studied models for understanding the long-range control of tissue growth and pattern formation during animal development. Nevertheless, fundamental questions remain unanswered regarding extracellular regulation of the ligand itself, as well as the nature of the downstream transcriptional response to BMP pathway activation. Here, we report the identification of larval translucida (ltl), a novel target of BMP activity in Drosophila. Both gain- and loss-of-function analyses implicate LTL, a leucine-rich repeat protein, in the regulation of wing growth and vein patterning. At the molecular level, we demonstrate that LTL is a secreted protein that antagonizes BMP-dependent MAD phosphorylation, indicating that it regulates DPP/BMP signaling at or above the level of ligand-receptor interactions. Furthermore, based on genetic interactions with the DPP-binding protein Crossveinless 2 and biochemical interactions with the glypican Dally-like, we propose that LTL acts in the extracellular space where it completes a novel auto-regulatory loop that modulates BMP activity.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Transdução de Sinais , Animais , Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/metabolismo , Neovascularização Fisiológica , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...