Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 160: 213863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642516

RESUMO

To obtain the collaborative antifungal potential of nanocomposites conjugated with graphene oxide (GO), a combination of GO with chitosan (CS/GO) and GO with chitosan (CS) and polyaniline (PANI/CS/GO) was carried out. The synthesized GO-nanocomposites were recognized by several techniques. Vanillin (Van.) and cinnamaldehyde (Cinn.) were loaded on the prepared nanocomposites as antioxidants through a batch adsorption process. In vitro release study of Van. and Cinn. from the nanocomposites was accomplished at pH 7 and 25°C. The antimicrobial activity of GO, CS/GO, and PANI/CS/GO was studied against tomato Fusarium oxysporum (FOL) and Pythium debaryanum (PYD) pathogens. The loaded ternary composite PANI/CS/GO exhibited the best percent of reduction against the two pathogens in vitro studies. The Greenhouse experiment revealed that seedlings' treatment by CS/GO/Van. and PANI/CS/GO/Van significantly lowered both disease index and disease incidence. The loaded CS/GO and PANI/CS/GO nanocomposites had a positive effect on lengthening shoots. Additionally, when CS/GO/Cinn., CS/GO/Van. and PANI/CS/GO/Van. were used, tomato seedlings' photosynthetic pigments dramatically increased as compared to infected control. The results show that these bio-nanocomposites can be an efficient, sustainable, nontoxic, eco-friendly, and residue-free approach for fighting fungal pathogens and improving plant growth.


Assuntos
Acroleína/análogos & derivados , Antifúngicos , Benzaldeídos , Quitosana , Fusarium , Grafite , Nanocompostos , Solanum lycopersicum , Grafite/farmacologia , Grafite/química , Solanum lycopersicum/microbiologia , Nanocompostos/química , Antifúngicos/farmacologia , Antifúngicos/química , Fusarium/efeitos dos fármacos , Quitosana/farmacologia , Quitosana/química , Benzaldeídos/farmacologia , Benzaldeídos/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pythium/efeitos dos fármacos , Compostos de Anilina/farmacologia , Compostos de Anilina/química , Acroleína/farmacologia , Acroleína/química
2.
Int J Biol Macromol ; 248: 125348, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330083

RESUMO

In this study, polyhydroxybutyrate-g-cellulose - Fe3O4/ZnO (PHB-g-cell- Fe3O4/ZnO) nanocomposites (NCs) was synthesized and used as a delivery system for Dopamine (DO) /Artesunate (ART) drugs. Different types of cells (Ccell, Scell, Pcell) grafted with PHB were designed and mixed with different contents of Fe3O4/ZnO. Physical and chemical features of PHB-g-cell-Fe3O4/ZnO NCs were detected by FTIR, XRD, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy. ART/DO drugs were loaded into PHB-g-cell- Fe3O4/ZnO NCs by single emulsion technique. The rate of drugs release was studied at different pHs (5.4, 7.4). Owing to the overlap between the absorption bands of both drugs, differential pulse adsorptive cathodic stripping voltammetry (DP-AdCSV) was used for the estimation of ART. To study the mechanism of ART and DO release, zero-order, first order, Hixon Crowell, Higuchi and Korsmeyer-Peppas models were applied to the experiment results. The results showed that Ic50 of ART @PHB-g-Ccell-10% DO@ Fe3O4/ZnO, ART @PHB-g-Pcell-10% DO@ Fe3O4/ZnO and ART @PHB-g-Scell-10% DO@ Fe3O4/ZnO were 21.22, 12.3, and 18.11 µg/mL, respectively. The results revealed that ART @PHB-g-Pcell-10% DO@ Fe3O4/ZnO was more effective against HCT-116 than the carriers loaded by a single drug. The antimicrobial efficacy of the nano-loaded drugs was considerably improved compared with free drugs.


Assuntos
Anti-Infecciosos , Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Óxido Ferroso-Férrico , Artesunato , Dopamina , Celulose/química , Anti-Infecciosos/química , Nanocompostos/química
3.
RSC Adv ; 13(8): 5107-5117, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36777946

RESUMO

A series of polypyrrole/polyetheramine-montmorillonite nanocomposites have been fabricated by the intercalation of different types of polyoxyalkylene amine hydrochloride (Jeffamines: D400, D2000, T5000, and T403) into montmorillonite layers via the cation-exchange process followed by in situ polymerization of pyrrole. The physicochemical characteristics of as-prepared nanocomposites were investigated using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and electrochemical impedance spectroscopy (EIS) instruments. The change of the types of Jeffamine causes a change in the geometrical structure, and surface area of nanocomposites. Noteworthy, the resulting polypyrrole/D2000-montmorillonite ([PDM-50]) nanocomposite exhibited a cauliflower-like shape with a specific surface area (116.2 m2 g-1) with the highest conductivity. Furthermore, the modified stripping voltammetric carbon paste sensor was fabricated based on 1.0% [PDM-50] nanocomposites to detect the drug nifuroxazide (NF). The sensor achieved detection limits (LD) of 0.24, and 0.9 nM of NF in the medication, and human urine fluid, respectively. This sensor showed appropriate repeatability, reproducibility, stability, and selectivity for NF sensing in different fluids accompanied by other interferents.

4.
Int J Biol Macromol ; 230: 123315, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708892

RESUMO

Cellulose was extracted from mango fibers and subjected to acid hydrolysis to obtain a nanofiber. Two morphological structures based on the polylactic acid (PLA)/nanocellulose (NC) combination have been synthesized and Fe3O4 NPs (M) are incorporated into both combinations. The first formulation is obtained by blending technique (PLA/M-NC) and the second formulation is obtained by self-assembly of grafted copolymer (M-PLA-co-NC). The magnetic nanocomposites are used as carriers for 5-fluorouracil (5-FU), an anti-cancer drug, and curcumin (CUR) to get PLA/M-NC/5-FU/CUR and M-PLA-co-NC/5-FU/CUR. The structural, morphological, and magnetic properties of the obtained nanocomposites were characterized by various techniques. The loading, release of 5-FU/CUR and the inhibition efficacy of nanocarriers loaded drugs against bacteria, HePG-2, MCF-7, and HCT-116 cell lines were studied. The two morphological forms of nanocarriers are considered close in loading % of 5-FU; however, the M-PLA-co-NC nanocarrier loaded double the loading % of CUR into PLA/M-NC nanocarrier, revealing superiority of copolymeric micelle than the blended formulation. The dual drugs loaded magnetic copolymeric micelles M-PLA-co-NC/5-FU/CUR revealed slower release, higher antibacterial and antitumor efficacy than the PLA/M-NC/5-FU/CUR. In this respect, the M-PLA-co-NC/5-FU/CUR could be considered a good nanomedicine against Streptococcus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli bacteria, besides the investigated cell lines.


Assuntos
Antineoplásicos , Curcumina , Curcumina/farmacologia , Curcumina/química , Óxido Ferroso-Férrico , Portadores de Fármacos/química , Poliésteres/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Polímeros/química , Micelas , Fluoruracila/farmacologia , Tamanho da Partícula
5.
Anal Methods ; 14(38): 3739-3750, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36124547

RESUMO

A stripping voltammetric sensor for ultrasensitive detection of artesunate (ART) and dopamine HCl (DA) has been successfully developed using a Ppy@ZnO/Fe3O4 core-shell nanocomposite ([PZM])-modified carbon paste sensor (MCPS). Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering, Brunauer-Emmett-Teller surface area method, and high-resolution transmission electron microscopy were used to characterize the physicochemical properties of the nanomaterials. Noteworthily, the morphology of [PZM] reveals a spherical core-shell nanostructure with an increase in the average diameter range of 20-37.5 nm (specific surface area (SSA) of 28.5 m2 g-1 (0.0247 cm3 g-1)) when compared with the average diameter range 7.5-15.7 nm (SSA of 5.43 m2 g-1 (0.0111 cm3 g-1)) of ZnO/Fe3O4[ZM]. The [PZM] MCPS provided the best electroactive surface area (0.078 cm2) and the least electrocatalytic activity (Rst = 370 Ω). Furthermore, the MCPS showed low detection limits (LODs) of 0.092 pg mL-1 (0.24 pM) and 0.0046 pg mL-1 (0.03 pM) for ART and DA, respectively. Moreover, LODs were found to be 0.029 pg mL-1 (0.75 pM) and 0.014 pg mL-1 (0.09 pM) for ART mixed with 0.7 pM of DA (ART1) and DA in the presence of 2.0 pM of ART drug (DA1), respectively. In addition, the MCPS revealed a proper repeatability, reproducibility, and storage stability (93.5-90.48%). During the routine analysis, the [PZM] MCPS detected ART and DA concentrations in human urine, without interference.


Assuntos
Nanocompostos , Óxido de Zinco , Artesunato , Carbono/química , Dopamina , Dopaminérgicos , Humanos , Nanocompostos/química , Polímeros/química , Pirróis/química , Reprodutibilidade dos Testes
6.
RSC Adv ; 12(33): 21422-21439, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975070

RESUMO

Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM. Changing the weight% of ZnO NPs in the prepared NCs resulted in an improvement in their antibacterial activity against Gram-negative and Gram-positive bacteria strains compared with the unmodified CS, and the encapsulation efficiency of 5-fluorouracil (5-FU) was found to be in the range of 61.4-69.2%. Subsequently, the release of 5-FU was monitored utilizing the mesoporous ZrO2-Co3O4 NPs modified carbon paste sensor via the square-wave adsorptive anodic stripping voltammetry (SW-AdASV) technique. Also, the release mechanism of 5-FU from each NC was studied by applying the zero-order, first-order, Hixson-Crowell and Higuchi models to the experimental results. The cytotoxicity of prepared NCs and 5-FU-encapsulated NCs was evaluated against the HePG-2, MCF-7 and HCT-116 cancer cell lines, in addition to the WI-38 and WISH normal cell lines using the MTT assay. Notably, 5-FU/CV10 NC exhibited the highest antitumor activity towards all tested cancer cell lines and a moderate activity against WI-38 and WISH normal cell lines with IC50 values of 28.02 ± 2.5 and 31.65 ± 2.7 µg mL-1, respectively. The obtained nanocomposites exhibited suitable selectivity with minimum toxicity against normal cells.

7.
Carbohydr Polym ; 282: 119111, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123746

RESUMO

Novel bio-based nanocomposites were developed as carriers for loading and sustained-release of vanillin (Van.) and cinnamaldehyde (Cinn.) antioxidants. The composites were obtained by intercalation of chitosan (CS) into sodium montmorillonite (CS/Mt), incorporation of chitosan with polyaniline (CS/PANI) and chitosan/polyaniline/exfoliated montmorillonite (CS/PANI/Mt). The structure and morphology of composites were characterized by FTIR, XRD, SEM and TEM. The release data of Van. and Cinn. from CS and CS/Mt obeyed well zero-order equation. However, Higuchi and Korsmeyer-Peppas models fitted well the release data from CS/PANI and CS/Mt composites. Their antifungal activity was examined towards Fusarium oxysporum and Pythium debaryanum. In vitro assay, CS, Cinn., Van., CS/PANI and CS/PANI/Cinn., have a strong inhibitory effect on the linear growth of the target pathogens, even at lower concentrations. Greenhouse assay indicated that seedling treatment by the loaded CS/PANI/Cinn and CS/Mt/Cinn. reduced both disease index and disease incidence parameters of both pathogens and possessed seedlings growth promoting potential of tomato compared to untreated-infected controls.


Assuntos
Acroleína/análogos & derivados , Antioxidantes/administração & dosagem , Benzaldeídos/administração & dosagem , Agentes de Controle Biológico/administração & dosagem , Quitosana/administração & dosagem , Fusarium/efeitos dos fármacos , Nanocompostos/administração & dosagem , Doenças das Plantas/prevenção & controle , Pythium/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Acroleína/administração & dosagem , Acroleína/química , Adsorção , Compostos de Anilina/administração & dosagem , Compostos de Anilina/química , Antioxidantes/química , Bentonita/administração & dosagem , Bentonita/química , Benzaldeídos/química , Agentes de Controle Biológico/química , Quitosana/química , Liberação Controlada de Fármacos , Fusarium/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Nanocompostos/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Pythium/crescimento & desenvolvimento
8.
ACS Omega ; 6(34): 21939-21951, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497889

RESUMO

Poly(aniline-co-o-anthranilic acid)-chitosan/silver@silver chloride (PAAN-CS/Ag@AgCl) nanohybrids were synthesized using different ratios of Ag@AgCl through a facile one-step process. The presence of CS led to the formation of the nanohybrid structure and prevented the aggregation of the copolymer efficiently. The synthesized nanohybrids were fully characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis. (E)-N'-(Pyridin-2-ylmethylene) hydrazinecarbothiohydrazide I was prepared using thiosemicarbazide and confirmed by 1H-NMR, 13C-NMR, and FTIR analyses. Loading of the azine derivative I using various concentrations at different pH values onto the nanohybrid was followed by UV-vis spectroscopy. Langmuir and Freundlich adsorption isotherm models were used to describe the equilibrium isotherm, and the adsorption followed the Langmuir adsorption isotherm. A pseudo-second-order model was used to describe the kinetic data. A PAAN-CS/Ag@AgCl nanohybrid loaded with azine I interestingly showed efficient antimicrobial activity against Escherichia coli and Staphylococcus aureus more than the azine derivative I. The release of azine I at different pH values (2-7.4) was investigated and the kinetics of release were studied using zero-order, first-order, second-order, Higuchi, Hixson-Crowell, and Korsmeyer-Peppas equations.

9.
Int J Biol Macromol ; 180: 771-781, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33705836

RESUMO

A nanohybrid formulation of silver­titanium dioxide nanoparticles/poly(lactic acid) (Ag-TiO2/PLA) was designed for Norfloxacin/Tenoxicam (NOR/TENO) targeted delivery to maximize the bioavailability and minimize the side effects of the drugs. Ag-TiO2 nanoparticles were prepared via Stober method. NOR, TENO and a mixture of NOR/TENO (NT) were loaded onto Ag-TiO2 nanoparticles and coated by PLA via solution casting. The physical interaction between the drugs and carrier was confirmed by Fourier-transform infrared (FTIR) analysis. X-ray diffraction (XRD) demonstrated that Ag-TiO2 consists of a cubic phase of Ag with two phases of TiO2 (anatase and brookite). Ag nanoparticle fine spots coated with TiO2 were collected to form spheres averaging at 100 nm in size. In-vitro release behavior of drugs was studied at different pH (5.4, 7.4) and the release of drug from NT/Ag-TiO2/PLA was faster at pH 7.4. Gram-positive and Gram-negative bacteria were used to investigate antibacterial properties of the nanohybrid. Cytotoxicity of the nanohybrid using an MTT assay was studied against different tumor and normal cell lines. It was found that NT/Ag-TiO2/PLA has an excellent cytotoxic effect against various bacterial cells and tumor cell lines. In addition, antioxidant properties of the nanohybrids were tested using ABTS method and the nanohybrid showed moderate antioxidant activity.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Metálicas/química , Norfloxacino/administração & dosagem , Piroxicam/análogos & derivados , Poliésteres/química , Prata/química , Titânio/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacocinética , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Norfloxacino/química , Norfloxacino/farmacocinética , Piroxicam/administração & dosagem , Piroxicam/química , Piroxicam/farmacocinética , Espectrofotometria
10.
RSC Adv ; 11(48): 30183-30194, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480245

RESUMO

A targeted drug delivery system based on biocompatible magnetic hydrogel nanocomposites consisting of poly[oligo(oxyethylene methacrylate)] anchored Fe3O4 nanoparticles was synthesized. The characteristics, thermal properties, morphology and magnetic properties were studied by XRD, FT-IR, TGA, SEM, TEM and VSM. A norfloxacin (NOR) anti-bacterial agent with a potential antitumor activity was immobilized into hydrogels, Fe3O4 nanoparticles and their magnetic hydrogel nanocomposites. The in vitro drug release manner of NOR was explored at different temperatures and pH values. The behavior of the drug release has been studied via different kinetic models. The antibacterial efficacy was tested against Streptococcus, Staphylococcus aureus, Kelebsella pneumonia and Escherichia coli via well diffusion method, and showed significant activity compared to the unloaded drug. Furthermore, an antitumor efficacy against HCT-116, HepG-2, PC3 and MCF-7 cancer cells revealed the highest cytotoxic efficacy with no influence on healthy cells. These nanodrugs, retaining both antibacterial and anticancer efficacy, have a talented therapeutic potential because of their selective cytotoxicity, connected with the ability to minimize the risk of bacterial infection in a cancer patient who is frequently immunocompromised.

11.
Mater Sci Eng C Mater Biol Appl ; 111: 110773, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279745

RESUMO

Herein, a 3D hierarchical blossom-like of Montmorillonite-ZnO (MMt/ZnO) micro-hybrids modified sensors have been successfully fabricated as an extraordinarily electrochemical sensor for detecting of the Diltiazem hydrochloride (DZM.HCl). The 3D hierarchical blossom-like of ZnO and series of MMt/ZnO hybrids have been synthesized using different contents of MMt [FMZ1-5] via a hydrogel polymer template method using alginate ions. The effect of incorporation of different contents of MMt on the morphology, surface area of hybrids were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area method, and High-resolution transmission electron microscopy (HR-TEM). The obtained hybrid [FMZ3] with 2.0% of MMt presented the most perfect blossom-like morphology and the highest surface area (190.06 m2/g) with the lowest resistivity. The hierarchical structure of [FMZ3] reveals nanospheres of ZnO with an average diameter of 5.49 nm, which are assembled into nanorods followed by assembling to form a blossom-like shape with the inclusion of MMt peeled layers inside the rod with d-spacing ranges from 1.1-7.4 nm. Meanwhile, the implemented modified sensor 1.0% [FMZ3] CPS retained excellent conductivity and electrocatalytic activity as appraised from the cyclic voltammetry (CV) measurements. Consequently, the electrochemical behavior and the oxidation mechanism of DZM.HCl drug has been investigated at the surface of the constructed sensor. Under the optimum operational conditions, the proposed sensor was successfully achieved detection limits 0.177, and 0.21 nmol·L-1 of DZM.HCl in a commercial and human biological fluid (Serum samples), respectively. The constructed sensor accomplished an appropriate accuracy and free of obstruction from other ordinarily drug excipients.


Assuntos
Bentonita/química , Diltiazem/análise , Técnicas Eletroquímicas/métodos , Óxido de Zinco/química , Diltiazem/sangue , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Tamanho da Partícula , Porosidade , Reprodutibilidade dos Testes , Espectrometria por Raios X , Propriedades de Superfície
12.
Mater Sci Eng C Mater Biol Appl ; 108: 110337, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923987

RESUMO

Biodegradable, biocompatible and non-toxic polymer-based nanoparticles are the novel nanotherapeutic tool which is used for adsorption and encapsulation drugs. Extended release formulation of Norfloxacin antibiotic, chemotherapeutic agent model, drug in the form of encapsulated and loaded poly (lactic acid) nanocomposites-based Titanium dioxide (PLA/TiO2) was developed. Nanocomposites were prepared using different contents (1, 3, 5 wt %) and morphologies of TiO2 (spheres (S), rods (R). The dispersion of TiO2 was aided by ultrasonic technique followed by solution casting method. The morphology, particle size, crystallite size and composition of the nanocomposites were examined by SEM, TEM, XRD and FTIR. The crystallinity and thermal behavior of the nanocomposites were characterized by DSC and TGA. NOR was loaded onto TiO2 nanospheres (NOR@TiO2 (S)) and the optimum conditions for loading was investigated. Pseudo-second order model was the more adequate to represent the kinetic data. The equilibrium data followed Freundlich adsorption isotherm and the adsorption process was exothermic. NOR@TiO2 (S) was encapsulated into PLA and in vitro release behavior of drug was compared with NOR adsorbed into PLA (NOR@PLA) and nanocomposites (NOR@PLA/TiO2) using different pH (6.7, 7.4) media. To study the mechanism of NOR release, first order, Higuchi, Hixon Crowell and Korsmeyer-Peppas models were applied on the experimental results. The cytotoxicity of the loaded nanocomposites using MTT assay was studied against HepG 2, MCF-7, HCT 116, PC-3, Hela, WI-38 and WISH cells. The encapsulated (NOR@ 5S/En PLA) showed the highest cytotoxic efficacy with moderate effect on normal cells. Moreover, the nanocomposites have great potential against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella and Klebsiella pneumonia. NOR@ PLA/TiO2 nanocomposites showed better antibacterial efficacy than NOR encapsulated nanocomposites. The nanocomposites could be effective vehicles for the sustained delivery of toxic anticancer drug.


Assuntos
Antineoplásicos , Nanocompostos , Neoplasias/tratamento farmacológico , Norfloxacino , Poliésteres , Titânio , Anti-Infecciosos/química , Anti-Infecciosos/farmacocinética , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Norfloxacino/química , Norfloxacino/farmacocinética , Norfloxacino/farmacologia , Células PC-3 , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Titânio/química , Titânio/farmacocinética , Titânio/farmacologia
13.
RSC Adv ; 10(56): 34046-34058, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35519075

RESUMO

Sustained release dosage forms enable prolonged and continuous release of a drug in the gastrointestinal tract for medication characterized by a short half lifetime. In this study, the effect of blending polyamine on poly(3-hydroxybutyrate) (PHB) as a carrier for norfloxacin (NF) was studied. The prepared blend was mixed with different amounts of NiO nanoparticles and characterized using FTIR analysis, X-ray diffraction analysis, thermogravimetric analysis, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. It was found that the drug released from the nanocomposite has a slow rate in comparison with NiO, PHB, and PHB/polyamine blend. The highest ratio of NiO content to the matrix (highest NF loading), leads to a slower rate of drug release. The release from the nanocomposites showed a faster rate at pH = 2 than that at pH = 7.4. The mechanisms of NF adsorption and release were studied on PHB/polyamine-3% NiO nanocomposite. In addition, the antimicrobial efficacy of nanocomposites loaded with the drug was determined and compared with the free drug. Inclusion of NiO into PHB/polyamine showed a higher efficacy against Streptococcus pyogenes and Pseudomonas aeruginosa than the free NF. Moreover, the cytotoxicity of PHB/polyamine-3% NiO against HePG-2 cells was investigated and compared with PHB and PHB/polyamine loaded with the drug. The most efficient IC50 was found for NF@PHB/polyamine-3% NiO (29.67 µg mL-1). No effect on cell proliferation against the normal human cell line (WISH) was observed and IC50 was detected to be 44.95 and 70 µg mL-1 for NiO nanoparticles and the PHB/polyamine-3% NiO nanocomposite, respectively indicating a selectivity of action towards tumor cells coupled with a lack of cytotoxicity towards normal cells.

14.
Int J Biol Macromol ; 114: 717-727, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548916

RESUMO

Norfloxacin (NOR), a well-known antibacterial agent is also known to have potential antitumor activity. In this study, NOR was immobilized into poly(3-hydroxybutyrate/polyethylene glycol­nickel oxide (PHB/PEG-NiO) nanocomposites using different NiO contents. The NiO nanoparticles were prepared by sol-gel method and the nanocomposites were prepared by solution cast films. Physicochemical features of nanocomposites were monitored by XRD, FTIR, SEM, TEM and TGA. PHB/PEG-5%NiO nanocomposites showed high NOR loading efficiency (60%) and a long-sustained release in comparison with other carriers. The studies on the adsorption of NOR onto PHB/PEG-NiO nanocomposite revealed that the adsorption process obeyed second order kinetic and Temkin isotherm was applicable to describe the adsorption process. The mechanism of release was studied by using different kinetic equations. The loaded nanocomposites (NOR@PHB/PEG-NiO) showed effective antimicrobial activity towards gram-positive (Staphylococcus aureus), and gram-negative bacteria (E.coli and Klebsiella pneumonia). The in vitro cytotoxicity was conducted on four human cancer cell lines viz., liver Hepatocellular carcinoma, colon cancer cell, prostate cancer cell, and breast adenocarcinoma from human and one normal human amnion cell line using MTT assay. Cytotoxicity results demonstrated that NOR@PHB/PEG-NiO significantly reduced cell viability than free NOR. NOR@ PHB/PEG-NiO has about 2.5-fold more cytotoxicity as compared with free drug with a lack of cytotoxicity against normal cells.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Citotoxinas , Sistemas de Liberação de Medicamentos/métodos , Nanocompostos , Neoplasias/tratamento farmacológico , Níquel , Norfloxacino , Poliésteres , Polietilenoglicóis , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Níquel/química , Níquel/farmacologia , Norfloxacino/sangue , Norfloxacino/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Proibitinas
15.
Mater Sci Eng C Mater Biol Appl ; 80: 494-501, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866192

RESUMO

A sensitive conductive nanocomposite sensor consisting of chitosan, zinc oxide nanoparticles, and polypyrrole was developed. The sensor was prepared by oxidative polymerization of pyrrole using (NH4)2S2O8 as the oxidant followed by mixing a Chitosan-Zinc oxide composite with a different content of Chitosan. The morphology and surface area of the nanocomposites were changed by changing the percentage of chitosan. The newly developed nanocomposites also showed a significant improvement in electrical conductivity as mentioned from the cyclic voltammetry measurements of the K3[Fe(CN)6] sample. A square-wave adsorptive anodic stripping voltammetry method successfully measured Isoxsuprine hydrochloride using different types of nanocomposite modified CPEs and showed a large enhancement of stripping peak current compared to bare CPE. Consequently, the proposed sensors proved to have a promissing feature for applications in biosensors.


Assuntos
Nanocompostos , Técnicas Biossensoriais , Carbono , Quitosana , Eletrodos , Pomadas , Polímeros , Pirróis , Óxido de Zinco
16.
Phys Chem Chem Phys ; 16(39): 21812-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25201562

RESUMO

A magnetic chitosan-polypyrrole-magnetite (Cs-PPy-Fe3O4) nanocomposite is prepared in a simple one-step method via in situ chemical polymerization of pyrrole using anhydrous FeCl3 as an oxidant in the presence of Cs. Magnetic Fe3O4 nanoparticles of size in the range of 10-20 nm are successfully introduced into the Cs-PPy matrix. Adsorption of an anionic dye (acid green 25, AG) from aqueous solution into the Cs-PPy-Fe3O4 nanocomposite is investigated. The nanocomposite exhibits high adsorption capacity compared to PPy and Cs themselves. After the adsorption, the Cs-PPy-Fe3O4 nanocomposite is easily separated from the reaction solution using an external magnet, which is very useful for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...