Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Physiol Plant ; 172(3): 1822-1834, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33963567

RESUMO

In nature, plants may suffer rapid dehydration (RD), which causes significant loss of the annual global chickpea production. Thus, ascertaining more knowledge concerning the RD-tolerance mechanisms in chickpea is crucial for developing high drought-tolerant varieties to assure sustainable chickpea production under sudden water deficit. Here, we focused on genotype-driven variation in leaf relative water content (RWC) and associated differences in RD-responsive physiological and biochemical attributes in roots and leaves of two chickpea varieties, FLIP00-21C and FLIP02-89C, subjected to well-watered and RD conditions. FLIP00-21C showed higher RD-tolerance than FLIP02-89C, evident by its higher leaf RWC during RD. Consistently, FLIP00-21C exhibited lower membrane injury due to lower hydrogen peroxide (H2 O2 ) accumulation than FLIP02-89C during RD, indicating reduced RD-induced oxidative damage. Under RD conditions, total phenolics in roots and flavonoids in roots and leaves increased more in FLIP02-89C compared to FLIP00-21C; however, the increased activities of superoxide dismutase and H2 O2 -scavenging enzymes were more properly coordinated in FLIP00-21C than in FLIP02-89C, which might contribute to more efficient antioxidant defense in FLIP00-21C than in FLIP02-89C. The higher leaf RWC of FLIP00-21C versus FLIP02-89C under RD might be associated with greater increases in the levels of the osmo-regulators proline and total free amino acids (TFAAs) in FLIP00-21C than in FLIP02-89C. Collectively, the higher RD-tolerance of FLIP00-21C is mainly associated with the maintenance of higher RWC, stronger antioxidant defense, and greater accumulation of proline and TFAAs. These traits could be useful for evaluating the drought-tolerance of chickpea varieties and further marker-assisted breeding approaches for improvement of chickpea productivity.


Assuntos
Cicer , Cicer/genética , Desidratação , Secas , Genótipo , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...