Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(9): 4978-4991, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38381099

RESUMO

It has been determined experimentally and numerically that a nonwetting slug in a tapered capillary tube, under the sole action of capillary force, self-propels itself toward the wider end of the tube until an equilibrium state is reached. The aim of this work is to highlight the state of the slug at equilibrium in terms of configuration and location. Furthermore, it turns out that gravity adds richness to this phenomenon, and more fates become possible. A modified Bond number is developed that determines the relative importance of gravity and capillarity for this system. According to the magnitude of the Bond number, three more fates are possible. Therefore, in a tapered capillary tube held vertically upward with its wider end at the top, in the absence of gravity or under microgravity conditions, the nonwetting slug moves upward toward the wider end of the tube until it reaches equilibrium with the two menisci part of a single sphere. The location of the slug at equilibrium in this case represents the farthest fate among the other fates. When gravity exists yet capillarity dominates, the slug still moves upward toward the wider end. However, in this case, the two menisci become parts of two different spheres of different curvatures. For this scenario, the slug climbs upward but reaches a lower level compared to the previous scenario. On the other hand, when gravity dominates, the slug experiences a net downward pull toward the narrower end of the tube and starts to move in the direction of gravity until capillary force establishes a balance, then it stops. When gravity sufficiently dominates, it pulls the slug downward until it completely drains off the tube. A computational fluid dynamics (CFD) analysis is conducted in order to build a framework for verification exercises. Excellent agreements between the results of the developed model and the CFD analysis are obtained. A fate map and a scheme are developed to identify these four fates based on two Bond numbers; namely, the initial Bond number and that associated with the slug when it is at the exit.

2.
Membranes (Basel) ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557105

RESUMO

In this comprehensive study, a seven-channel ultrafiltration (UF) titania membrane was used to investigate the impact of the pulsatile cleaning process on the crossflow filtration system. Seventeen experimental runs were performed for different operating conditions with a transmembrane pressure (TMP) varying from 0.5 to 1.5 bar, a crossflow velocity (CFV) ranging from 0.5 to 1 m/s, and pulsatile parameters within an interval varying from 60 to 120 s with a duration of 0.8 s, and collecting membrane permeate flux and volume data. The optimized operating conditions revealed that a TMP of 1.5 bar, a CFV of 0.71 m/s, and a pulsatile cycle of 85 s were the best operating conditions to reach the highest steady permeability flux and volume of 302 LMH and 8.11 L, respectively. The UF ceramic membrane under the optimized inputs allowed for an oil-rejection ability of 99%. The Box-Behnken design (BBD) model was used to analyze the effect of crossflow operating conditions on the permeate flux and volume. The analysis of variance (ANOVA) indicated that the quadratic regression models were highly significant. At a 95% confidence interval, the optimum TMP significantly enhanced the flux and permeate volume simultaneously. The results also demonstrated a positive interaction between the TMP and the pulsatile process, enhancing the permeate flux with a slight impact on the permeate volume. At the same time, the interaction between the CFV and pulsatile flow improved the permeability and increased the permeate volume.

3.
Membranes (Basel) ; 12(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36135887

RESUMO

Fouling represents a bottleneck problem for promoting the use of membranes in filtration and separation applications. It becomes even more persistent when it comes to the filtration of fluid emulsions. In this case, a gel-like layer that combines droplets, impurities, salts, and other materials form at the membrane's surface, blocking its pores. It is, therefore, a privilege to combat fouling by minimizing the accumulation of these droplets that work as seeds for other incoming droplets to cluster and coalesce with. In this work, we explore the use of the newly developed and novel periodic feed pressure technique (PFPT) in combating the fouling of ceramic membranes upon the filtration of oily water systems. The PFPT is based on alternating the applied transmembrane pressure (TMP) between the operating one and zero. A PFPT cycle is composed of a filtration half-cycle and a cleaning half-cycle. Permeation occurs when the TMP is set at its working value, while the cleaning occurs when it is zero. Three PFPT patterns were examined over two feeds of oily water systems with oil contents of 100 and 200 ppm, respectively. The results show that the PFPT is very effective in minimizing the problem of fouling compared to a non-PFPT normal filtration. Furthermore, the overall drops in permeate flux during the cleaning half-cycles are compensated by appreciable enhancement due to the significant elimination of fouling development such that the overall production of filtered water is even increased. Inspection of the internal surface of the membrane post rinsing at the end of the experiment proves that all PFPT cycles maintained the ceramic membranes as clean after a 2-h operation. This can ensure a prolonged lifespan of the ceramic membrane use and a continuous greater permeate volume production. The advantage of the PFPT is that it can be implemented on existing units with minimal modification, ease of operation, and saving energy.

4.
Langmuir ; 38(33): 10274-10287, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35944206

RESUMO

The emergence of a droplet from a capillary tube opening into a reservoir is an important phenomenon in several applications. In this work, we are particularly interested in this phenomenon in an attempt to highlight the physics behind droplet appearance. The emergence of a droplet from a tube opening into a reservoir under quasi-static conditions passes through three stages. The first stage starts when the meniscus in the tube reaches the exit. At this moment, the meniscus intersects the wall of the tube at the equilibrium contact angle. The interface then develops until its radius of curvature becomes equal to the tube radius. During this stage, the capillary pressure increases. In the second stage, the interface continues to evolve with its radius of curvature increasing until the static contact angle with respect to the surface of the reservoir is achieved. This marks the end of the second stage and the start of the third in which the contact line (CL) starts to depart the tube opening along the reservoir surface and the contact angle remains constant. Analytical models for the three stages have been derived based on the law of conservation of linear momentum. The models account for pressure, gravitational, capillary, and viscous forces, while inertia force is ignored. The model can predict the profiles of the mean velocity in the tube, the capillary pressure, and the evolution of the contact angle. In addition, a computational fluid dynamics (CFD) simulation has been conducted to provide a framework for validation and verification of the developed model. The CFD simulation shows qualitative behavior in terms of snapshots of the emerging droplet with time similar to that speculated by the analytical model. In addition, quantitative comparisons with respect to velocity, pressure, and volume profiles of the droplet show very good agreement, which builds confidence in the modeling approach.

5.
Langmuir ; 38(14): 4461-4472, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35353536

RESUMO

In this work, the problem of re-ejection of a permeating droplet through a membrane pore back to the feed channel when the transmembrane pressure (TMP) becomes zero is investigated. This problem is important in the context of oily water filtration using membranes. In particular, in the novel periodic feed pressure technique (PFPT), which has been proposed to combat membrane fouling, the TMP alternates between the operating value and zero in a periodic manner. During the period in which TMP is high, filtration occurs, and when it is zero, cleaning commences. We are particularly interested in what happens to a droplet, initially undergoing permeation, when the TMP becomes zero. It is evident that when the TMP is zero the meniscus inside the pore reverses its motion toward the feed channel rather than toward the permeate side by the action of interfacial tension force. A theoretical model is built to determine the rate at which the meniscus inside the pore advances when the TMP is zero. The conservation of momentum equation is used to establish a one-dimensional model that updates the location of the meniscus with time. The derived model considers both quasi-static and dynamic scenarios. In addition, the model accounts for both the viscosity contrast between the two fluids, as well as the gravity. A computational fluid dynamics (CFD) simulation has been built to provide a framework for model verification and validation. The model, based on quasi-static conditions, provides an overall similar trend to that obtained via CFD analysis. Nevertheless, the quasi-static model predicts a more rapid meniscus advancement inside the pore than the CFD simulation. When the dynamic contact angle is incorporated, very good matching is observed.

6.
Soft Matter ; 18(9): 1920-1940, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188174

RESUMO

The problem of terminating a droplet at the surface of a membrane in a crossflow field is an important topic in the context of controlled emulsification of fluids for use in pharmaceutical and other industries. Some of these industries struggle to produce emulsions of uniform sizes for their products requiring higher levels of precision. In this work, we comprehensively investigated one such technique in which droplets were produced via membrane openings and were terminated via a crossflow field. Conditions of permeation and termination were identified. A model was developed to estimate the size of the emerging droplets from information about the interfacial properties, geometry, and operating conditions (i.e., pressure and crossflow velocity). Three forces, including capillary pressure, interfacial tension, and drag forces, were identified that account for a developed torque balance, which was then used to determine the onset of breakup of an emerging droplet. A comprehensive computational fluid dynamics (CFD) analysis has been conducted to highlight the physics involved in the process and also to provide scenarios for comparison exercises. The effects of crossflow velocity, applied pressure, and viscosity contrasts have been studied. It has been determined that the emerging droplet experiences deformation along the crossflow field because of the hydrodynamic drag. The receding portion of the contact line at the surface of the membrane wraps around the pore opening, generating an interfacial tension force that produces an opposing torque due to the crossflow drag and capillary pressure. Using this phenomenon, a framework for estimating the size of the droplet upon breakup is established. Comparisons with the results obtained from the CFD analysis under different conditions show very good agreement, which builds confidence in the modeling approach.


Assuntos
Hidrodinâmica , Membranas Artificiais , Emulsões , Tensão Superficial , Viscosidade
7.
Membranes (Basel) ; 11(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807347

RESUMO

In this work, the effects of the deteriorating affinity-related properties of membranes due to leaching and erosion on their rejection capacity were studied via computational fluid dynamics (CFD). The function of affinity-enhancing agents is to modify the wettability state of the surface of a membrane for dispersed droplets. The wettability conditions can be identified by the contact angle a droplet makes with the surface of the membrane upon pinning. For the filtration of fluid emulsions, it is generally required that the surface of the membrane is nonwetting for the dispersed droplets such that the interfaces that are formed at the pore openings provide the membrane with a criterion for the rejection of dispersals. Since materials that make up the membrane do not necessarily possess the required affinity, it is customary to change it by adding affinity-enhancing agents to the base material forming the membrane. The bonding and stability of these materials can be compromised during the lifespan of a membrane due to leaching and erosion (in crossflow filtration), leading to a deterioration of the rejection capacity of the membrane. In order to investigate how a decrease in the contact angle can lead to the permeation of droplets that would otherwise get rejected, a CFD study was conducted. In the CFD study, a droplet was released in a crossflow field that involved a pore opening and the contact angle was considered to decrease with time as a consequence of the leaching of affinity-enhancing agents. The CFD analysis revealed that the decrease in the contact angle resulted in the droplet spreading over the surface more. Furthermore, the interface that was formed at the entrance of the pore opening flattened as the contact angle decreased, leading the interface to advance more inside the pore. The droplet continued to pass over the pore opening until the contact angle reached a certain value, at which point, the droplet became pinned at the pore opening.

8.
Langmuir ; 37(12): 3672-3684, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33734691

RESUMO

When a droplet lands over a nonwetting surface it forms a convex interface that makes a contact angle larger than 90°. If the droplet lands over a pore opening, an interface is also formed at the pore opening that can prevent the droplet from permeating. The conditions for permeation and pinning are very much related to a threshold critical pressure that above which the droplet will permeate. This property defines a selectivity criterion for microfiltration processes of oily water systems using membrane technology. Such a feature of the membrane gets compromised, however, due to the permeation of droplets that are relatively smaller in size or whose critical entry pressure is smaller than the applied transmembrane pressure (TMP). In this work, we investigate what happens to a droplet when it coalesces with a droplet that undergoes permeation. Two scenarios are considered: namely, (1) a droplet coalesces with a permeating one whose interface inside the pore has not broken through the pore exit and (2) a droplet coalesces with a permeating one whose interface in the pore has broken through. We show that a larger droplet (that will essentially not permeate if pinned over a membrane opening) will now permeate when the pore is filled with oil from a preceding one or recoils when the interface inside the pore of a preceding droplet has not broken through the exit of the pore. This has interesting implications for the rejection capacity of the membrane, which decreases due to the permeation of droplets that would, otherwise, not permeate. A computational fluid dynamic (CFD) study has been conducted to confirm the conclusions obtained from the theoretical study and to reproduce the fates of the combined droplet after coalescence at the surface of the membrane. Furthermore, a simplified formula for estimating the critical entry pressure is developed.

9.
Membranes (Basel) ; 11(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671756

RESUMO

The drag of dispersals towards a membrane surface is a consequence of the filtration process. It also represents the first step towards the development of the problem of fouling. In order to combat membrane fouling, it is important to understand such drag mechanisms and provide a modeling framework. In this work, a new modeling and numerical approach is introduced that is based on a one-domain model in which both the dispersals and the surrounding fluid are dealt with as a fluid with heterogeneous property fields. Furthermore, because of the fact that the geometry of the object assumes axial symmetry and the configuration remains fixed, the location of the interface may be calculated using geometrical relationships. This alleviates the need to define an indicator function and solve a hyperbolic equation to update the configuration. Furthermore, this approach simplifies the calculations and significantly reduces the computational burden required otherwise if one incorporates a hyperbolic equation to track the interface. To simplify the calculations, we consider the motion of an extended cylindrical object. This allows a reduction in the dimensions of the problem to two, thereby reducing the computational burden without a loss of generality. Furthermore, for this particular case there exists an approximate analytical solution that accounts for the effects of the confining boundaries that usually exist in real systems. We use such a setup to provide the benchmarking of the different averaging techniques for the calculations of properties at the cell faces and center, particularly in the cells involving the interface.

10.
Langmuir ; 36(32): 9634-9642, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32693605

RESUMO

Produced water treatment remains a challenging issue for the oil production industry. Finding ways to effectively treat oily water systems without incurring higher operational costs is the struggle and focus of recent research work. The success in establishing a modeling approach to study the filtration of oily water systems is dependent upon our understanding of the fate of oil droplets at the membrane surface. It has been determined that four fates confront oil droplets at the membrane surface, namely, permeation, breakup, pinning, and rejection. Conditions for manifestation of any of these four fates depend on two operating conditions (transmembrane pressure and crossflow velocity) in comparison with two critical conditions (entry pressure and critical velocity of dislodgment). In this work, a new simplified formula for the critical entry pressure is introduced. It compares very well with the formula already existing in the literature. Furthermore, the complete model for the critical velocity of dislodgment in crossflow filtration is presented and highlighted. More investigations on the physical processes that are involved during the pinning of a droplet at a pore opening are presented. In addition, a thorough analysis of the forces that are involved during the permeation of a droplet that could lead to its breakup is presented. It is found that, once the droplet reaches the pore opening, the interfacial tension force and the pressure force continue to increase. Following the critical configuration, these forces continuously decline and the drag force due to the crossflow field, therefore, becomes sufficient to break up the droplet.

11.
Sci Total Environ ; 698: 134288, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514026

RESUMO

The problem of fouling is considered a major reason for deteriorating the performance of porous membranes. Even though the accumulations of materials at the membrane surface are inevitable, efforts are continuously spent to minimize their drawbacks. Several techniques have been tested to minimize the problem of fouling. Some of these methods, however, confront some technical difficulties that make their use unfeasible. For example, in polymeric-type membranes, back flushing may result in the loss of bonding between the active and the support layers resulting thereby to the disintegration of the membrane. Recently, an interestingly new approach has been proposed that minimizes the problem of fouling and maintains the integrity of the membrane. The so-called periodic feed pressure technique, PFPT, cleans the surface of the membrane by reducing the adherence of the droplets to the membrane giving the chance to the crossflow field to sweep off pinned droplets. In this work, some of the features of the PFPT technique are highlighted using results from CFD simulation. Then we further investigate the PFPT technique in the realm of the multicontinuum modeling approach in which both the emulsion and the membrane are treated as overlapping continua. The behavior of the membrane is studied considering different transmembrane pressure values to highlight the fates of the different oil continua upon interacting with membrane continua. From the CFD highlights, it is found that during the half cycle when the TMP is set to zero, oil droplets at the surface of the membrane becomes unstable and it becomes easier for the crossflow field to dislodge them. The multicontinuum study, on the other hand, provides macroscopic analysis on the effects of different TMP cycles on important macroscopic parameters that influence the design, including the rejection capacity of membranes.

12.
Environ Sci Pollut Res Int ; 26(22): 22945-22957, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177420

RESUMO

Groundwater is a major source of drinking water for many Canadians, and contamination by heavy metals poses a significant risk to people and the environment. In this study, three water quality indices are studied in the vicinity of an unlined landfill in a semiarid climate. The study investigates indices using geostatistical analysis and ordinary kriging. This study employs a novel coupling technique in order to compare the index-based maps to a groundwater quality map from overlapping heavy metal kriged maps. A total of 11 heavy metals were evaluated in preliminary analysis, but only four (Mn, As, Fe, and U) had higher concentrations than allowable limits in some or all of the monitoring wells at the site. Results from mean-based classification of indices suggest the aquifer in proximity to the landfill has been impacted by metal contaminants. Kriged maps show that the spatial variations of Mn and U are similar, while results of Fe and As are also similar. However, the two sets of maps have distinctly different patterns. Maps for indices show an elevated plateau extending from the unlined landfill to the southeast corner, implying that the landfill may have negatively impacted groundwater quality. A groundwater quality map is developed by overlaying the heavy metal maps. The resulting map shows that the north and west parts of the study have lower groundwater pollution with respect to metal contaminants. The groundwater quality map may be more applicable for practitioners who need comprehensive water quality measurement.


Assuntos
Água Potável/análise , Água Subterrânea/análise , Metais Pesados/análise , Canadá , Água Potável/química , Metais Pesados/química , Análise Espacial , Instalações de Eliminação de Resíduos , Qualidade da Água
13.
Water Res ; 146: 159-176, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243059

RESUMO

Oily water production is one of the many drawbacks of petroleum and several other industries. Finding effective ways for the treatment of produced water remain one of the main areas of interest in membrane sciences. Albeit the many advantages of membrane technology, they suffer from the unavoidable problem of fouling, which results from the accumulation of dispersed materials at the surface of membranes. Membrane modification and operational optimization have been approached as a potential cure of the problem of fouling. In this work we introduce a new and novel method that minimizes the development of fouling and in the same time utilizes no chemicals (i.e., environmentally friendly). The core of this method is based on alternating the pressure in the feed channel in a periodic manner and is therefore named the periodic feed pressure technique, PFPT. The idea is to make pinned droplets at the surface of the membrane lose essential forces that keep them sticking to the surface. The drag force due to permeation flux and the capillary force due to interfacial tension represents the two forces that largely contribute to the pinning of oil droplets at the surface of the membrane. Other forces including buoyancy and lift forces are generally small to be of significant influence. The idea of the PFPT is, therefore, to eliminate the force due to permeation drag. This is done by setting the transmembrane pressure (TMP) to zero at fixed intervals allowing pinned oil droplets to dislodge the surface. When the TMP is set to zero, permeation flux stops and the force due to permeation drag vanishes. This significantly reduces the overall residence time of pinned oil droplets, minimizing the chance for other oil droplets to cluster and coalesce with pinned ones. The PFPT does not cause any damage to the support layer of the polymeric membrane, which is a drawback of back-flushing methodology. The novel PFPT displays minimal membrane fouling and very similar permeation recovery despite only half the cycle time is in filtration mode. In this work, we show how the permeation flux is recovered and provide comparisons between the PFPT and regular filtration methodology. Furthermore, we compare the overall amount of filtrate at the end of the experiments using both methods. It is interesting to note that, the amount of filtrate using the PFPT is very much comparable to that obtained using regular filtration methodology and even higher. By optimizing the frequency of the cycle and the amplitude of the pressure change, it is possible to customize the PFPT to various membrane technologies and to achieve the highest recovery of the flux. Visual inspections of the membranes post operation and post rinsing indicate that membranes undergoing filtration using the PFPT achieves a very clean surface compared with those undergoing regular filtration processes. This method is a promising solution to membrane fouling that is easy to implement without any additional use of chemicals or equipment. Computational fluid dynamics (CFD) investigation is also conducted on microfiltration processes to show why this technique works.


Assuntos
Hidrodinâmica , Purificação da Água , Filtração , Membranas Artificiais , Porosidade
14.
Sensors (Basel) ; 16(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657080

RESUMO

The direction of arrival (DOA) estimation problem is formulated in a compressive sensing (CS) framework, and an extended array aperture is presented to increase the number of degrees of freedom of the array. The ordinary least square adaptable least absolute shrinkage and selection operator (OLS A-LASSO) is applied for the first time for DOA estimation. Furthermore, a new LASSO algorithm, the minimum variance distortionless response (MVDR) A-LASSO, which solves the DOA problem in the CS framework, is presented. The proposed algorithm does not depend on the singular value decomposition nor on the orthogonality of the signal and the noise subspaces. Hence, the DOA estimation can be done without a priori knowledge of the number of sources. The proposed algorithm can estimate up to ( ( M 2 - 2 ) / 2 + M - 1 ) / 2 sources using M sensors without any constraints or assumptions about the nature of the signal sources. Furthermore, the proposed algorithm exhibits performance that is superior compared to that of the classical DOA estimation methods, especially for low signal to noise ratios (SNR), spatially-closed sources and coherent scenarios.

15.
Ground Water ; 54(2): 262-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26171913

RESUMO

In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms.


Assuntos
Água Subterrânea/análise , Movimentos da Água , Algoritmos , Modelos Teóricos , Porosidade , Pressão
16.
J Contam Hydrol ; 181: 114-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26212784

RESUMO

In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties is an essential feature that exists almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.


Assuntos
Hidrologia/métodos , Nanopartículas , Anisotropia , Filtração , Água Subterrânea , Modelos Teóricos , Nanopartículas/análise , Porosidade , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...