Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(15): 6289-6299, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33966279

RESUMO

BACKGROUND: Tomato is one of the widely cultivated crops worldwide that is affected by several pests, such as fungi (Fusarium oxysoporum, Alternaria solani), bacteria (Pectobacterium carotovorum) and weeds (Cyperus iria L., Amaranthus spinosus). A growing interest has emerged for developing plant-derived pesticidal compounds to counteract these pests. One attractive alternative is to use barnyard grass (Echinochloa crus-galli), known to be widely resistant to synthetic herbicides, as a potential biopesticide compound source. RESULTS: Phytochemical screening of the crude extract showed that phenolic compounds were the most abundant component present in barnyard grass. The crude extract was evaluated for antifungal, antibacterial and herbicidal activities. Bioassays showed inhibition against F. oxysporum (10.73 ± 1.30%) and A. solani (20.47 ± 3.51%), the causative agent of Fusarium rot and early blight disease in tomato, respectively. Antibacterial activity against P. carotovorum gave a mean zone of inhibition (paper disc diffusion assay) of 17.00 ± 1.00 mm and an IC50 (dose-response assay) of 2.26 mg mL-1 was observed. Dose-responsive herbicidal activity on the lettuce seed germination bioassay produced an IC50 of 459.30 ppm. Selectivity studies showed inhibition towards C. iria and A. spinosus with no effect on tomato. Lastly, bioassay-guided fractionation coupled with untargeted metabolomics studies using ultra-performance liquid chromatography with diode array detection-tandem mass spectrometry mass analyses revealed loliolide and tricin as the putative metabolites present in barnyard grass. CONCLUSION: To date, this is the first reported study on using barnyard grass as a potential alternative biopesticide against tomato pests such as fungi, bacteria and weeds. © 2021 Society of Chemical Industry.


Assuntos
Alternaria/efeitos dos fármacos , Echinochloa/química , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Solanum lycopersicum/microbiologia , Herbicidas/farmacologia , Lactuca/efeitos dos fármacos , Folhas de Planta/química
2.
J Sci Food Agric ; 100(3): 1185-1194, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31680262

RESUMO

BACKGROUND: Ludwigia hyssopifolia (G. Don) Exell, one of the problem weeds in some rice-producing countries, was studied to determine its allelopathic potential based on the effects of aqueous extracts of its tissues (leaves, roots and stem) on seedling growth of selected weeds and rice. The major phenolic compound of its leaves was also isolated and characterized. RESULTS: L. hyssopifolia aqueous leaf extract showed significant inhibition of shoot growth and biomass accumulation of weeds (Amaranthus spinosus L., Dactyloctenium aegyptium L., Cyperus iria L.) while maintaining less adverse effects on rice (crop) compared to other aqueous extracts of roots and stem. Phytochemical screening showed that phenols, tannins, flavonoids, terpenoids, saponins and coumarins are found in its leaf aqueous extract. The Folin-Ciocalteu method revealed that its leaves contain 26.66 ± 0.30 mg GAE g-1 leaf. The extract was then acid-hydrolyzed to liberate the phenolics (25 mg phenolics g-1 leaf). The major compound was isolated via preparative thin-layer chromatography using formic acid-ethyl acetate-n-hexane (0.05:4:6) solvent system. It had maximum UV absorption at 272 nm while its Fourier transform infrared spectrum revealed phenol, carboxylic acid and ether functionalities. This also had similar chromatographic mobility when run together with syringic acid in two-dimensional paper chromatography and thin-layer chromatography. CONCLUSIONS: L. hyssopifolia has potential allelopathic activity and its leaf aqueous extract showed the highest phytotoxic activity (P ≤ 0.05) indicating its potential as a bioherbicide. The most probable identity of the major phenolic compound is syringic acid. © 2019 Society of Chemical Industry.


Assuntos
Herbicidas/química , Onagraceae/química , Extratos Vegetais/química , Amaranthus/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Herbicidas/isolamento & purificação , Herbicidas/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Taninos/química , Taninos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...