Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944324

RESUMO

To probe its environment, the flying insect controllably flexes, twists, and maneuvers its antennae by coupling mechanical deformations with the sensory output. We question how the materials properties of insect antennae could influence their performance. A comparative study was conducted on four hawkmoth species: Manduca sexta, Ceratomia catalpae, Manduca quinquemaculata, and Xylophanes tersa. The morphology of the antennae of three hawkmoths that hover while feeding and one putatively non-nectar-feeding hawkmoth (Ceratomia catalpa) do not fundamentally differ, and all the antennae are comb-like (i.e., pectinate), markedly in males but weakly in females. Applying different weights to the free end of extracted cantilevered antennae, we discovered anisotropy in flexural rigidity when the antenna is forced to bend dorsally versus ventrally. The flexural rigidity of male antennae was less than that of females. Compared with the hawkmoths that hover while feeding, Ceratomia catalpae has almost two orders of magnitude lower flexural rigidity. Tensile tests showed that the stiffness of male and female antennae is almost the same. Therefore, the differences in flexural rigidity are explained by the distinct shapes of the antennal pectination. Like bristles in a comb, the pectinations provide extra rigidity to the antenna. We discuss the biological implications of these discoveries in relation to the flight habits of hawkmoths. Flexural anisotropy of antennae is expected in other groups of insects, but the targeted outcome may differ. Our work offers promising new applications of shaped fibers as mechanical sensors. STATEMENT OF SIGNIFICANCE: Insect antennae are blood-filled, segmented fibers with muscles in the two basal segments. The long terminal segment is muscle-free but can be flexed. Our comparative analysis of mechanical properties of hawkmoth antennae revealed a new feature: antenna resistance to bending depends on the bending direction. Our discovery replaces the conventional textbook scenario considering hawkmoth antennae as rigid rods. We showed that the pectinate antennae of hawkmoths behave as a comb in which the bristles resist bending when they come together. This anisotropy of flexural resistance offers a new mode of environmental sensing that has never been explored. The principles we found apply to other insects with non-axisymmetric antennae. Our work offers new applications for shaped fibers that could be designed to sense the flows.

2.
J Colloid Interface Sci ; 607(Pt 1): 502-513, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509121

RESUMO

HYPOTHESIS: The Landau-Levich-Derjaguin (LLD) theory is widely applied to predict the film thickness in the dip-coating process. However, the theory was designed only for flat plates and thin fibers. Fifty years ago, White and Tallmadge attempted to generalize the LLD theory to thick rods using a numerical solution for a static meniscus and the LLD theory to forcedly match their numeric solution with the LLD asymptotics. The White-Talmadge solution has been criticized for not being rigorous yet widely used in engineering applications mostly owing to the lack of alternative solutions. A new set of experiments significantly expanding the range of White-Tallmadge conditions showed that their theory cannot explain the experimental results. We then hypothesized that the results of LLD theory can be improved by restoring the non-linear meniscus curvature in the equation. With this modification, the obtained equation should be able to describe static menisci on any cylindrical rods and the film profiles observed at non-zero rod velocity. EXPERIMENT: To test the hypothesis, we distinguished capillary forces from viscous forces by running experiments with different rods and at different withdrawal velocities and video tracking the menisci profiles and measuring the weight of deposited films. The values of film thickness were then fitted with a mathematical model based on the modified LLD equation. We also fitted the meniscus profiles. FINDINGS: The results show that the derived equation allows one to reproduce the results of the LLD theory and go far beyond those to include rods of different radii. A new set of experimental data together with the White-Tallmadge experimental data are explained with the modified LLD theory. A set of simple formulas approximating numeric results have been derived. These formulas can be used in engineering applications for the prediction of the coating thickness.

3.
Phys Rev E ; 100(5-1): 051101, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869886

RESUMO

Magnetic nanorods rotating in a viscous liquid are very sensitive to any ambient magnetic field. We theoretically predicted and experimentally validated the conditions for two-dimensional synchronous and asynchronous rotation as well as three-dimensional precession and tumbling of nanorods in an ambient field superimposed on a planar rotating magnetic field. We discovered that any ambient field stabilizes the synchronous precession of the nanorod so that the nanorod precession can be completely controlled. This effect opens up different applications of magnetic nanorods as sensors of weak magnetic fields, for microrheology, and generally for magnetic levitation.

4.
Sci Rep ; 7(1): 6582, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747640

RESUMO

Fluid-feeding insects have evolved a unique strategy to distribute the labor between a liquid-acquisition device (proboscis) and a sucking pump. We theoretically examined physical constraints associated with coupling of the proboscis and sucking pump into a united functional organ. Classification of fluid feeders with respect to the mechanism of energy dissipation is given by using only two dimensionless parameters that depend on the length and diameter of the proboscis food canal, maximum expansion of the sucking pump chamber, and chamber size. Five species of Lepidoptera - White-headed prominent moth (Symmerista albifrons), White-dotted prominent moth (Nadata gibosa), Monarch butterfly (Danaus plexippus), Carolina sphinx moth (Manduca sexta), and Death's head sphinx moth (Acherontia atropos) - were used to illustrate this classification. The results provide a rationale for categorizing fluid-feeding insects into two groups, depending on whether muscular energy is spent on moving fluid through the proboscis or through the pump. These findings are relevant to understanding energetic costs of evolutionary elaboration and reduction of the mouthparts and insect diversification through development of new habits by fluid-feeding insects in general and by Lepidoptera in particular.


Assuntos
Evolução Biológica , Sistema Digestório/anatomia & histologia , Metabolismo Energético , Lepidópteros/anatomia & histologia , Lepidópteros/fisiologia , Animais , Fenômenos Biomecânicos , Lepidópteros/classificação , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...