Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14572, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275532

RESUMO

The objective of this paper is to unveil a novel damping mechanism exhibited by 3D woven lattice materials (3DW), with emphasis on response to high-frequency excitations. Conventional bulk damping materials, such as rubber, exhibit relatively low stiffness, while stiff metals and ceramics typically have negligible damping. Here we demonstrate that high damping and structural stiffness can be simultaneously achieved in 3D woven lattice materials by brazing only select lattice joints, resulting in a load-bearing lattice frame intertwined with free, 'floating' lattice members to generate damping. The produced material samples are comparable to polymers in terms of damping coefficient, but are porous and have much higher maximum use temperature. We shed light on a novel damping mechanism enabled by an interplay between the forcing frequency imposed onto a load-bearing lattice frame and the motion of the embedded, free-moving lattice members. This novel class of damping metamaterials has potential use in a broad range of weight sensitive applications that require vibration attenuation at high frequencies.

2.
Adv Mater ; 28(36): 7915-7920, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27384125

RESUMO

Multistable shape-reconfigurable architected materials encompassing living hinges and enabling combinations of high strength, high volumetric change, and complex shape-morphing patterns are introduced. Analytical and numerical investigations, validated by experiments, are performed to characterize the mechanical behavior of the proposed materials. The proposed architected materials can be constructed from virtually any base material, at any length scale and dimensionality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...