Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2018): 20232067, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471550

RESUMO

Like many polar animals, emperor penguin populations are challenging to monitor because of the species' life history and remoteness. Consequently, it has been difficult to establish its global status, a subject important to resolve as polar environments change. To advance our understanding of emperor penguins, we combined remote sensing, validation surveys and using Bayesian modelling, we estimated a comprehensive population trajectory over a recent 10-year period, encompassing the entirety of the species' range. Reported as indices of abundance, our study indicates with 81% probability that there were fewer adult emperor penguins in 2018 than in 2009, with a posterior median decrease of 9.6% (95% credible interval (CI) -26.4% to +9.4%). The global population trend was -1.3% per year over this period (95% CI = -3.3% to +1.0%) and declines probably occurred in four of eight fast ice regions, irrespective of habitat conditions. Thus far, explanations have yet to be identified regarding trends, especially as we observed an apparent population uptick toward the end of time series. Our work potentially establishes a framework for monitoring other Antarctic coastal species detectable by satellite, while promoting a need for research to better understand factors driving biotic changes in the Southern Ocean ecosystem.


Assuntos
Spheniscidae , Animais , Ecossistema , Teorema de Bayes , Fatores de Tempo , Tecnologia de Sensoriamento Remoto , Regiões Antárticas
2.
Sci Adv ; 7(39): eabh3674, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559555

RESUMO

The Weddell seal is one of the best-studied marine mammals in the world, owing to a multidecadal demographic effort in the southernmost part of its range. Despite their occurrence around the Antarctic coastline, we know little about larger scale patterns in distribution, population size, or structure. We combined high-resolution satellite imagery from 2011, crowd-sourcing, and habitat modeling to report the first global population estimate for the species and environmental factors that influence its distribution. We estimated ~202,000 (95% confidence interval: 85,345 to 523,140) sub-adult and adult female seals, with proximate ocean depth and fast-ice variables as factors explaining spatial prevalence. Distances to penguin colonies were associated with seal presence, but only emperor penguin population size had a strong negative relationship. The small, estimated population size relative to previous estimates and the seals' nexus with trophic competitors indicates that a community ecology approach is required in efforts to monitor the Southern Ocean ecosystem.

3.
Glob Chang Biol ; 27(23): 6252-6262, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34491603

RESUMO

The impacts of climate change in Antarctica and the Southern Ocean are not uniform and ice-obligate species with dissimilar life-history characteristics will likely respond differently to their changing ecosystems. We use a unique data set of Weddell Leptonychotes weddellii and crabeater seals' (CESs) Lobodon carcinophaga breeding season distribution in the Weddell Sea, determined from satellite imagery. We contrast the theoretical climate impacts on both ice-obligate predators who differ in life-history characteristics: CESs are highly specialized Antarctic krill Euphausia superba predators and breed in the seasonal pack ice; Weddell seals (WESs) are generalist predators and breed on comparatively stable fast ice. We used presence-absence data and a suite of remotely sensed environmental variables to build habitat models. Each of the environmental predictors is multiplied by a 'climate change score' based on known responses to climate change to create a 'change importance product'. Results show CESs are more sensitive to climate change than WESs. Crabeater seals prefer to breed close to krill, and the compounding effects of changing sea ice concentrations and sea surface temperatures, the proximity to krill and abundance of stable breeding ice, can influence their post-breeding foraging success and ultimately their future breeding success. But in contrast to the Ross Sea, here WESs prefer to breed closer to larger colonies of emperor penguins (Aptenodytes forsteri). This suggests that the Weddell Sea may currently be prey-abundant, allowing the only two air-breathing Antarctic silverfish predators (Pleuragramma antarctica) (WESs and emperor penguins) to breed closer to each other. This is the first basin-scale, region-specific comparison of breeding season habitat in these two key Antarctic predators based on real-world data to compare climate change responses. This work shows that broad-brush, basin-scale approaches to understanding species-specific responses to climate change are not always appropriate, and regional models are needed-especially when designing marine protected areas.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Regiões Antárticas , Mudança Climática , Ecossistema , Camada de Gelo
4.
Ecol Appl ; 27(1): 10-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052497

RESUMO

Extraction of Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea began in 1997, following a management plan that targets the largest fish with a goal of reducing the spawning biomass by 50% over 35 yr. We investigate the potential long-term consequences of the reduced availability of this prey for Weddell seals (Leptonychotes weddellii). Energy demands in seals are acute, especially immediately following lactation, when females must recover substantial mass and cope with molting costs. We tested the hypothesis that toothfish are critically important for adult female seals during this period. Toothfish body mass is three orders of magnitude greater, and its energy density nearly double that of the most common seal prey, Antarctic silverfish (Pleuragramma antarcticum). Reduction or elimination of toothfish consumption could impair a female's ability to sufficiently recover and successfully produce a pup in the following pupping season. Our goals are to (1) illustrate mechanisms and conditions whereby toothfish depletion might plausibly affect seal population trends; (2) identify measurable parameters of the seals' ecology that may help better understand the potential negative impact of toothfish depletion on seal populations; and (3) promote a precautionary management approach for the fishery that includes monitoring of seal populations We constructed a set of inter-linked models of seal diving behavior, physiological condition, and demography based on existing information. We evaluate the effect of the following factors on seal mass recovery and intrinsic population growth rates: fishery depletion rate, daily diving limits, probability of a successful dive, and body mass recovery target. We show that loss of toothfish has the greatest potential impact on seal populations' growth rate. Under some scenarios, populations may decrease at >10% per year. Critical parameters to better understand fishery impacts include prevalence and size of toothfish in the seals' diet; the relationship between diet and the rate of mass recovery; and female breeding propensity in relation to body condition at the end of the molting period. Our results lend support to concerns about the potential negative impact of toothfish extraction in the Ross Sea; and to advocate for a precautionary management approach by the fishery.


Assuntos
Metabolismo Energético , Cadeia Alimentar , Perciformes , Focas Verdadeiras/fisiologia , Animais , Regiões Antárticas , Dieta , Feminino , Pesqueiros , Modelos Biológicos , Oceanos e Mares , Dinâmica Populacional , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...