Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 9: 214, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27090297

RESUMO

BACKGROUND: Chagas disease is a major public health problem in Latin America. Its etiologic agent, Trypanosoma cruzi, is mainly transmitted through the contaminated faeces of blood-sucking insects called triatomines. Triatoma infestans is the main vector in various countries in South America and recently, several foci of wild populations of this species have been described in Bolivia and other countries. These wild populations are suspected of affecting the success of insecticide control campaigns being carried out in South America. To assess the risk that these T. infestans populations pose to human health, it is helpful to determine blood meal sources. METHODS: In the present work, blood meals were identified in various Bolivian wild T. infestans populations and in three specific areas, in both wild and intra-peridomestic populations to assess the links between wild and domestic cycles of T. cruzi transmission. PCR-HDA and sequencing of Cytb gene were used to identify these blood meal sources. RESULTS AND DISCUSSION: Fourteen vertebrate species were identified as wild blood meal sources. Of those, the most prevalent species were two Andean endemic rodents, Octodontomys gliroides (36%) and Galea musteloides (30%), while humans were the third most prevalent source (18.7%). Of 163 blood meals from peridomestic areas, more than half were chickens, and the others were generally domestic animals or humans. Interestingly, blood from wild animals was identified in triatomines captured in the peridomestic and domestic environment, and blood from domestic animals was found in triatomines captured in the wild, revealing links between wild and domestic cycles of T. cruzi transmission. CONCLUSION: The current study suggests that wild T. infestans attack humans in the wild, but is also able to bite humans in domestic settings before going back to its natural environment. These results support the risk to human health posed by wild populations of T. infestans.


Assuntos
Animais Domésticos/parasitologia , Animais Selvagens/parasitologia , Doença de Chagas/veterinária , Insetos Vetores/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Animais Domésticos/sangue , Animais Domésticos/classificação , Animais Selvagens/sangue , Animais Selvagens/classificação , Sangue/parasitologia , Bolívia/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Humanos , Insetos Vetores/fisiologia , Triatoma/fisiologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/isolamento & purificação
2.
Parasit Vectors ; 7: 164, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24708673

RESUMO

BACKGROUND: Wild populations of Triatoma infestans are now believed to be the source of reinfestation of dwellings in some Andean areas and could impede the full achievement of vector control campaigns in this region. Given the poor knowledge of these populations in natural conditions, their basic biology traits, such as monthly demographic variations and movements of individuals, were explored. METHODS: A previously identified wild population of T. infestans in a field adjacent to a group of isolated houses in an Andean valley (department of La Paz, Bolivia) was explored using regular capture assays over 13 months in 50 sites selected at the beginning of the study. The capture-mark-recapture method was applied monthly using mouse-baited adhesive traps for captures and fingernail polish of different colors for the marking. RESULTS: The monthly capture assays did not show significant differences between rainy and dry seasons, showing evidence for a certain stability of the wild T. infestans population with only the nymph population tending to decline during the middle of the rainy season when rain is more intensive. Throughout the study, the monthly average number of bugs was 51.1 ± 25.3 per assay, 91.1% were nymphs, and they were found at 30 of the 50 sites (60%). The number of times a site was positive varied from one to 13. Site infestation was associated with the underground position of the traps, and rocks around and in the surroundings of the traps. The recaptures after marking were successful (138 recaptures over the study). The marking made it possible to detect for 14.5% of the recaptures significant movements of adults (up to 168 m) and nymphs (up to 34 m). Some bugs (nymphs and females) were recaptured after 5 months. For adults, recaptures (46 in total) mostly occurred between September and March. Females were recaptured twice as frequently as males. CONCLUSION: The Andean wild populations of T. infestans showed a strong spatial and temporal stability during the year-long study. Dispersal may occur mainly during the rainy season. The capture-mark-recapture method was successful and the longevity of the bugs and the distances covered by nymphs and adults were recorded.


Assuntos
Triatoma/classificação , Triatoma/fisiologia , Animais , Feminino , Masculino , Camundongos , Ninfa , Dinâmica Populacional , Estações do Ano , Fatores de Tempo
3.
PLoS One ; 8(11): e82269, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312410

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is subdivided into six discrete typing units (DTUs; TcI-TcVI) of which TcI is ubiquitous and genetically highly variable. While clonality is the dominant mode of propagation, recombinant events play a significant evolutive role. Recently, foci of wild Triatoma infestans have been described in Bolivia, mainly infected by TcI. Hence, for the first time, we evaluated the level of genetic exchange within TcI natural potentially panmictic populations (single DTU, host, area and sampling time). Seventy-nine TcI stocks from wild T. infestans, belonging to six populations were characterized at eight microsatellite loci. For each population, Hardy-Weinberg equilibrium (HWE), linkage disequilibrium (LD), and presence of repeated multilocus genotypes (MLG) were analyzed by using a total of seven statistics, to test the null hypothesis of panmixia (H0). For three populations, none of the seven statistics allowed to rejecting H0; for another one the low size did not allow us to conclude, and for the two others the tests have given contradictory results. Interestingly, apparent panmixia was only observed in very restricted areas, and was not observed when grouping populations distant of only two kilometers or more. Nevertheless it is worth stressing that for the statistic tests of "HWE", in order to minimize the type I error (i. e. incorrect rejection of a true H0), we used the Bonferroni correction (BC) known to considerably increase the type II error ( i. e. failure to reject a false H0). For the other tests (LD and MLG), we did not use BC and the risk of type II error in these cases was acceptable. Thus, these results should be considered as a good indicator of the existence of panmixia in wild environment but this must be confirmed on larger samples to reduce the risk of type II error.


Assuntos
Triatoma/parasitologia , Trypanosoma cruzi/isolamento & purificação , Animais , Bolívia , Variação Genética , Interações Hospedeiro-Parasita , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Triatoma/genética
4.
PLoS One ; 8(11): e80786, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278320

RESUMO

Triatoma infestans, the major vector of Chagas disease south of the Amazon in South America, has a large distribution of wild populations, contrary to what has previously been stated. These populations have been suspected of being the source of reinfestation of human habitats and could impede the full success of vector control campaigns. This study examined gene flow between intra-peridomestic populations and wild populations collected in the surround areas in three Andean localities in Bolivia. The populations were defined according to temporal, ecological, and spatial criteria. After DNA extraction from the legs of each insect, the samples were analyzed using seven microsatellite markers. First, the analysis of molecular variance (AMOVA) detected an absence of differentiation between wild and intra-peridomestic populations, although strong structuring was observed between the populations within each environment. Then for some populations, the Bayesian method of assignment to inferred populations showed very similar assignment patterns of the members of wild or intra-peridomestic populations in each locality. Finally, the detection of the first-generation migrants within the different populations provided evidence of insect displacement from the wild to the intra-peridomestic environment. This result indicates that, after control campaigns in the Andes, controlling this new paradigm of vector transmission risk stemming from the invasion of human habitats by wild populations of T. infestans requires long-term maintenance of public monitoring to keep the risk at a minimal level. Since wild populations of T. infestans have also been detected elsewhere in Argentina, Paraguay, and Chile, there is an urgent need to take these populations into account in future monitoring of Chagas disease transmission.


Assuntos
Ecossistema , Triatoma/genética , Animais , Bolívia , Feminino , Loci Gênicos/genética , Variação Genética , Genótipo , Geografia , Humanos , Masculino , Repetições de Microssatélites/genética , Filogenia , Dinâmica Populacional
5.
PLoS Negl Trop Dis ; 6(5): e1650, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685616

RESUMO

BACKGROUND: The current persistence of Triatoma infestans (one of the main vectors of Chagas disease) in some domestic areas could be related to re-colonization by wild populations which are increasingly reported. However, the infection rate and the genetic characterization of the Trypanosoma cruzi strains infecting these populations are very limited. METHODOLOGY/PRINCIPAL FINDINGS: Of 333 wild Triatoma infestans specimens collected from north to south of a Chagas disease endemic area in Bolivia, we characterized 234 stocks of Trypanosoma cruzi using mini-exon multiplex PCR (MMPCR) and sequencing the glucose phosphate isomerase (Gpi) gene. Of the six genetic lineages ("discrete typing units"; DTU) (TcI-VI) presently recognized in T. cruzi, TcI (99.1%) was overdominant on TcIII (0.9%) in wild Andean T. infestans, which presented a 71.7% infection rate as evaluated by microscopy. In the lowlands (Bolivian Chaco), 17 "dark morph" T. infestans were analyzed. None of them were positive for parasites after microscopic examination, although one TcI stock and one TcII stock were identified using MMPCR and sequencing. CONCLUSIONS/SIGNIFICANCE: By exploring large-scale DTUs that infect the wild populations of T. infestans, this study opens the discussion on the origin of TcI and TcV DTUs that are predominant in domestic Bolivian cycles.


Assuntos
Triatoma/parasitologia , Trypanosoma cruzi/classificação , Trypanosoma cruzi/isolamento & purificação , Animais , Bolívia , DNA de Protozoário/química , DNA de Protozoário/genética , Feminino , Glucose-6-Fosfato Isomerase/genética , Humanos , Masculino , Dados de Sequência Molecular , Filogeografia , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Trypanosoma cruzi/genética
6.
Am J Trop Med Hyg ; 86(3): 455-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22403316

RESUMO

Sylvatic populations of Triatoma infestans might be involved in the recolonization of human dwellings. We report here the discoveries of new T. infestans sylvatic foci in the Bolivian Chaco. Eighty-one triatomines were caught, 38 of which were identified as T. infestans. Triatoma sordida and Panstrongylus geniculatus were the other species collected. One T. infestans and one T. sordida were infected with Trypanosoma cruzi TcI; one T. infestans was infected with TcII. These discoveries add to the debate on the geographic distribution of sylvatic T. infestans populations, the geographic origin of the species, and the epidemiological role of these populations.


Assuntos
Doença de Chagas/epidemiologia , Triatoma/classificação , Animais , Bolívia/epidemiologia , Doença de Chagas/fisiopatologia , Doença de Chagas/transmissão , Meio Ambiente , Humanos , Panstrongylus/classificação , Filogenia , Trypanosoma cruzi/patogenicidade
7.
Infect Genet Evol ; 12(1): 21-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21963963

RESUMO

The identification of blood meals in vectors contributes greatly to the understanding of interactions between vectors, microorganisms and hosts. The aim of the current work was to complement the validation of cytochrome b (Cytb) heteroduplex assay (HDA) previously described, and to add the sequencing of the Cytb gene of some samples for the identification of blood meals in triatomines. Experimental feedings of reared triatomines helped to clarify the sensitivity of the HDA. Moreover, the sequencing coupled with the HDA, allowed the assessment of the technique's taxonomic level of discrimination. The primers used to produce DNA fragments of Cytb genes for HDA had a very high sensitivity for vertebrate DNAs, rather similar for mammals, birds and reptiles. However, the formation of heteroduplex depended on blood meal's quality rather than its quantity; a correlation was observed between blood meals' color and the positivity of HDA. HDA electrophoresis profiles were reproducible, and allowed the discrimination of blood origins at the species level. However, in some cases, intraspecific variability of Cytb gene generated different HDA profiles. The HDA based on comparison of electrophoresis profiles is a very useful tool for screening large samples to determine blood origins; the subsequent sequencing of PCR products of Cytb corresponding to different HDA profiles allowed the identification of species whatever the biotope in which the vectors were captured.


Assuntos
Sangue , Citocromos b/genética , Triatominae/química , Animais , Fragmentação do DNA , Primers do DNA , Análise Heteroduplex , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA , Especificidade da Espécie
8.
Infect Genet Evol ; 11(5): 1045-57, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21463708

RESUMO

Triatoma infestans is the main and most widespread vector of Chagas disease in South America. For the first time, a large sample of sylvatic populations of T. infestans was analyzed by ITS-2 and mtCytB sequencing. ITS-2 showed a low level of polymorphism but revealed a dichotomy between the Andean and non-Andean sylvatic populations. On the contrary, mtCytB sequences showed a high polymorphism (19 haplotypes determined by 35 variable sites) revealing a strong structuring between most of the sylvatic populations and possible ancient isolation and bottleneck in the Northern Andes. The dichotomy Andean vs. non-Andean populations was not observed with this marker. Moreover, mtCytB haplotype genealogies showed that the non-Andean haplotypes would have derived from the Andean ones, supporting somewhat an Andean origin of the species. Nevertheless, a non-Andean origin could not be discarded because a remarkable genetic diversity was found in the non-Andean sample. The comparison of the sylvatic haplotypes with the domestic ones from GenBank suggested multiple events of T. infestans domestication in Andean and non-Andean areas, instead of a major and unique domestication event in the Bolivian Andes, as previously proposed.


Assuntos
Doença de Chagas/transmissão , Triatoma/genética , Animais , Sequência de Bases , Bolívia/epidemiologia , Doença de Chagas/epidemiologia , Citocromos b , DNA/genética , DNA Intergênico , Demografia , Variação Genética , Humanos , Mitocôndrias , Dados de Sequência Molecular , Filogenia , Triatoma/fisiologia
9.
Am J Trop Med Hyg ; 82(4): 574-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20348501

RESUMO

Wild populations of Triatoma infestans, the main vector of Chagas disease in the Southern Cone countries, may be involved in reinfestation of human dwellings, limiting the success of vector-control campaigns in Bolivia. Knowledge of the distribution of these populations remains incomplete. We report here the detection of T. infestans wild populations in large areas in the department of La Paz, Bolivia. Among 18 sylvatic areas investigated, 17 were positive with T. infestans specimens. The infection rate of captured T. infestans with Trypanosoma cruzi was 85.7% in adult specimens. These results expand the geographical distribution of wild populations of T. infestans; it may be distributed throughout the Inter-Andean Dry Forest eco-region of Bolivia. The current information allows us to propose the hypothesis that a sylvatic origin of the reinfestation is located in the valleys of La Paz.


Assuntos
Triatoma/fisiologia , Animais , Bolívia , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Demografia , Humanos , Insetos Vetores/classificação , Insetos Vetores/fisiologia , Fatores de Risco , Triatoma/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...