Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Mol Evol ; 91(5): 647-668, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37526693

RESUMO

The Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs) infect a wide range of eukaryotic species, including amoeba, algae, fish, amphibia, arthropods, birds, and mammals. This group of viruses has linear or circular double-stranded DNA genomes whose size spans approximately one order of magnitude, from 100 to 2500 kbp. The ultimate origin of this peculiar group of viruses remains an open issue. Some have argued that NCLDVs' origin may lie in a bacteriophage ancestor that increased its genome size by subsequent recruitment of eukaryotic and bacterial genes. Others have suggested that NCLDVs families originated from cells that underwent an irreversible process of genome reduction. However, the hypothesis that a number of NCLDVs sequences have been recruited from the host genomes has been largely ignored. In the present work, we have performed pangenomic analyses of each of the seven known NCLDVs families. We show that these families' core- and shell genes have cellular homologs, supporting possible escaping-gene events as part of its evolution. Furthermore, the detection of sequences that belong to two protein families (small chain ribonucleotide reductase and Erv1/Air) and to one superfamily [2OG-Fe(II) oxygenases] that are for distribution in all NCLDVs core and shell clusters encoding for oxygen-dependent enzymes suggests that the highly conserved core these viruses originated after the Proterozoic Great Oxidation Event that transformed the terrestrial atmosphere 2.4-2.3 Ga ago.


Assuntos
Evolução Molecular , Vírus , Animais , Filogenia , Vírus de DNA/genética , Vírus/genética , Eucariotos/genética , Oxigênio , Genoma Viral/genética , Mamíferos/genética
2.
Carbon Balance Manag ; 11(1): 24, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27909460

RESUMO

BACKGROUND: Locating terrestrial sources and sinks of carbon (C) will be critical to developing strategies that contribute to the climate change mitigation goals of the Paris Agreement. Here we present spatially resolved estimates of net C change across United States (US) forest lands between 2006 and 2010 and attribute them to natural and anthropogenic processes. RESULTS: Forests in the conterminous US sequestered -460 ± 48 Tg C year-1, while C losses from disturbance averaged 191 ± 10 Tg C year-1. Combining estimates of net C losses and gains results in net carbon change of -269 ± 49 Tg C year-1. New forests gained -8 ± 1 Tg C year-1, while deforestation resulted in losses of 6 ± 1 Tg C year-1. Forest land remaining forest land lost 185 ± 10 Tg C year-1 to various disturbances; these losses were compensated by net carbon gains of -452 ± 48 Tg C year-1. C loss in the southern US was highest (105 ± 6 Tg C year-1) with the highest fractional contributions from harvest (92%) and wind (5%). C loss in the western US (44 ± 3 Tg C year-1) was due predominantly to harvest (66%), fire (15%), and insect damage (13%). The northern US had the lowest C loss (41 ± 2 Tg C year-1) with the most significant proportional contributions from harvest (86%), insect damage (9%), and conversion (3%). Taken together, these disturbances reduced the estimated potential C sink of US forests by 42%. CONCLUSION: The framework presented here allows for the integration of ground and space observations to more fully inform US forest C policy and monitoring efforts.

3.
s.l; Asociación Chilena de Protección de la Familia; 1988. 35 p. ilus.(APROFA. Cuaderno Educativo, 1).
Monografia em Espanhol | LILACS | ID: lil-71067
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...