Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 25(3): 639-647, Ago. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216221

RESUMO

In addition to the UPR pathway, yeast cells require components of the HOG pathway to respond to ER stress. In this work, we found that unphosphorylated Sln1 and Ssk1 are required to mount an appropriate response to Tn. We also found that the MAPKKKs Ssk2 participates in the Tn response, but its osmo-redundant protein Ssk22 does not. We also found that the Pbs2 docking sites for Ssk2 (RDS-I and KD) are partially dispensable when mutated separately; however, the prevention of Ssk2 binding to Pbs2, by the simultaneous mutation of RDS-I and KD, caused strong sensitivity to Tn. In agreement with the lack of Hog1 phosphorylation during Tn treatment, a moderate resistance to Tn is obtained when a Pbs2 version lacking its kinase activity is expressed; however, the presence of mutual Pbs2-Hog1 docking sites is essential for the Tn response. Finally, we detected that Tn induced a transcriptional activation of some components of the SLN1 branch. These results indicate that the Tn response requires a complex formed by the MAPK module and components of the SLN1 branch but not their canonical osmoregulatory activities.(AU)


Assuntos
Humanos , Retículo Endoplasmático , Tunicamicina , Glicosilação , Transcriptoma , Microbiologia
2.
Int Microbiol ; 25(3): 639-647, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35597864

RESUMO

In addition to the UPR pathway, yeast cells require components of the HOG pathway to respond to ER stress. In this work, we found that unphosphorylated Sln1 and Ssk1 are required to mount an appropriate response to Tn. We also found that the MAPKKKs Ssk2 participates in the Tn response, but its osmo-redundant protein Ssk22 does not. We also found that the Pbs2 docking sites for Ssk2 (RDS-I and KD) are partially dispensable when mutated separately; however, the prevention of Ssk2 binding to Pbs2, by the simultaneous mutation of RDS-I and KD, caused strong sensitivity to Tn. In agreement with the lack of Hog1 phosphorylation during Tn treatment, a moderate resistance to Tn is obtained when a Pbs2 version lacking its kinase activity is expressed; however, the presence of mutual Pbs2-Hog1 docking sites is essential for the Tn response. Finally, we detected that Tn induced a transcriptional activation of some components of the SLN1 branch. These results indicate that the Tn response requires a complex formed by the MAPK module and components of the SLN1 branch but not their canonical osmoregulatory activities.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Estresse do Retículo Endoplasmático , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tunicamicina/metabolismo , Tunicamicina/farmacologia
3.
World J Microbiol Biotechnol ; 33(6): 111, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28470426

RESUMO

Cells contain signal transduction pathways that mediate communication between the extracellular environment and the cell interior. These pathways control transcriptional programs and posttranscriptional processes that modify cell metabolism in order to maintain homeostasis. One type of these signal transduction systems are the so-called Two Component Systems (TCS), which conduct the transfer of phosphate groups between specific and conserved histidine and aspartate residues present in at least two proteins; the first protein is a sensor kinase which autophosphorylates a histidine residue in response to a stimulus, this phosphate is then transferred to an aspartic residue located in a response regulator protein. There are classical and hybrid TCS, whose difference consists in the number of proteins and functional domains involved in the phosphorelay. The TCS are widespread in bacteria where the sensor and its response regulator are mostly specific for a given stimulus. In eukaryotic organisms such as fungi, slime molds, and plants, TCS are present as hybrid multistep phosphorelays, with a variety of arrangements (Stock et al. in Annu Rev Biochem 69:183-215, 2000; Wuichet et al. in Curr Opin Microbiol 292:1039-1050, 2010). In these multistep phosphorelay systems, several phosphotransfer events take place between different histidine and aspartate residues localized in specific domains present in more than two proteins (Thomason and Kay, in J Cell Sci 113:3141-3150, 2000; Robinson et al. in Nat Struct Biol 7:626-633, 2000). This review presents a brief and succinct description of the Two-component systems of model yeasts, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Cryptococcus neoformans and Kluyveromyces lactis. We have focused on the comparison of domain organization and functions of each component present in these phosphorelay systems.


Assuntos
Fosfatos/metabolismo , Transdução de Sinais/fisiologia , Leveduras/metabolismo , Ácido Aspártico/metabolismo , Candida albicans/metabolismo , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas , Histidina/metabolismo , Histidina Quinase , Kluyveromyces/metabolismo , Fosforilação/fisiologia , Fosfotransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
4.
Eukaryot Cell ; 9(10): 1602-11, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675581

RESUMO

Candida glabrata is a haploid opportunistic fungal pathogen that is phylogenetically related to Saccharomyces cerevisiae. Even though C. glabrata has no known sexual cycle, it contains, like S. cerevisiae, three mating type-like loci (MTL) called MTL1, MTL2, and MTL3, as well as most of the genes required for mating, meiosis, and sporulation. MTL1 is localized at an internal position on chromosome B and is thought to be the locus corresponding to the MAT locus in S. cerevisiae. MTL2 and MTL3 are localized close to two telomeres on different chromosomes (29.4 kb from Chr E-L and 10.5 kb from Chr B-L, respectively). By using URA3 reporter gene insertions at the three MTL loci, we found that in contrast to the case for S. cerevisiae, only MTL3 is subject to transcriptional silencing while MTL2 is transcriptionally active, and this is in agreement with previously reported data. We found that the silencing of MTL3 is nucleated primarily at the left telomere of chromosome B and spreads over 12 kb to MTL3, rather than nucleating at flanking, closely positioned cis-acting silencers, like those flanking HMR and HML of S. cerevisiae. Interestingly, the silencing of MTL3 absolutely requires the yKu70, yKu80, and Rif1 proteins, in sharp contrast to the silencing of the HM loci of S. cerevisiae. In addition, we found that several cell type-specific genes are expressed in C. glabrata regardless of the presence, or even absence, of mating type information at any of the MTL loci.


Assuntos
Candida glabrata/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genes Fúngicos Tipo Acasalamento , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Candida glabrata/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...