Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004444

RESUMO

Among broad-spectrum anticancer agents, paclitaxel (PTX) has proven to be one of the most effective against solid tumors for which more specific treatments are lacking. However, drawbacks such as neurotoxicity and the development of resistance reduce its therapeutic efficacy. Therefore, there is a need for compounds able to improve its activity by synergizing with it or potentiating its effect, thus reducing the doses required. We investigated the interaction between PTX and tannins, other compounds with anticancer activity known to act as repressors of several proteins involved in oncological pathways. We found that both tannic acid (TA) and ethyl gallate (EG) strongly potentiate the toxicity of PTX in Hep3B cells, suggesting their utility in combination therapy. We also found that AT and EG promote tubulin polymerization and enhance the effect of PTX on tubulin, suggesting a direct interaction with tubulin. Biochemical experiments confirmed that TA, but not EG, binds tubulin and potentiates the apparent binding affinity of PTX for the tubulin binding site. Furthermore, the molecular docking of TA to tubulin suggests that TA can bind to two different sites on tubulin, one at the PTX site and the second at the interface of α and ß-tubulin (cluster 2). The binding of TA to cluster 2 could explain the overstabilization in the tubulin + PTX combinatorial assay. Finally, we found that EG can inhibit PTX-induced expression of pAkt and pERK defensive protein kinases, which are involved in resistance to PXT, by limiting cell death (apoptosis) and favoring cell proliferation and cell cycle progression. Our results support that tannic acid and ethyl gallate are potential chemotherapeutic agents due to their potentiating effect on paclitaxel.

2.
Int J Dev Biol ; 65(4-5-6): 345-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930360

RESUMO

Molecular oxygen (O2), reactive oxygen species (ROS), and associated redox networks are cornerstones of aerobic life. These molecules and networks have gained recognition as fundamental players in mechanisms that regulate the development of multicellular organisms. First, we present a brief review in which we provide a historical description of some relevant discoveries that led to this recognition. We also discuss the fact that, despite its abundance in nature, oxygen is a limiting factor, and its high availability variation impacted the evolution of adaptive mechanisms to guarantee the proper development of diverse species under such extreme environments. Finally, some examples of when oxygen and ROS were identified as relevant for the control of developmental processes are discussed. We take into account not only the current knowledge on animal redox developmental biology, but also briefly discuss potential scenarios on the origin and evolution of redox developmental mechanisms and the importance of the ever-changing environment.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Oxigênio , Espécies Reativas de Oxigênio , Animais , Oxirredução
3.
Dev Biol ; 466(1-2): 22-35, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828730

RESUMO

Metamorphosis is a postembryonic developmental process that involves morphophysiological and behavioral changes, allowing organisms to adapt into a novel environment. In some amphibians, aquatic organisms undergo metamorphosis to adapt in a terrestrial environment. In this process, these organisms experience major changes in their circulatory, respiratory, digestive, excretory and reproductive systems. We performed a transcriptional global analysis of heart, lung and gills during diverse stages of Ambystoma velasci to investigate its metamorphosis. In our analyses, we identified eight gene clusters for each organ, according to the expression patterns of differentially expressed genes. We found 4064 differentially expressed genes in the heart, 4107 in the lung and 8265 in the gills. Among the differentially expressed genes in the heart, we observed genes involved in the differentiation of cardiomyocytes in the interatrial zone, vasculogenesis and in the maturation of coronary vessels. In the lung, we found genes differentially expressed related to angiogenesis, alveolarization and synthesis of the surfactant protein. In the case of the gills, the most prominent biological processes identified are degradation of extracellular matrix, apoptosis and keratin production. Our study sheds light on the transcriptional responses and the pathways modulation involved in the transformation of the facultative metamorphic salamander A. velasci in an organ-specific manner.


Assuntos
Proteínas de Anfíbios/biossíntese , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Metamorfose Biológica/fisiologia , Transcriptoma/fisiologia , Ambystoma , Animais , Especificidade de Órgãos/fisiologia
4.
Pharmaceutics ; 11(10)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590262

RESUMO

Multidrug resistance (MDR) has become a major obstacle in the treatment of cancer, and is associated with mechanisms such as increased drug outflow, reduction of apoptosis, and/or altered drug metabolism. These problems can be mitigated by the coadministration of agents known as chemosensitizers, as they can reverse resistance to anticancer drugs and eventually resensitize cancer cells. We explore the chemosensitizing effect of Achillin, a guaianolide-type sesquiterpene lactone isolated from the Mexican medicinal plant Artemisia ludovisiana, to reverse MDR in Hep3B/PTX cells of hepatocellular carcinoma, which present resistance to paclitaxel (PTX). Achillin showed an important effect as chemosensitizer; indeed, the cytotoxic effect of PTX (25 nM) was enhanced, and the induction of G2/M phase cell cycle arrest and apoptosis were potentiated when combining with Achillin (100 µM). In addition, we observed that Achillin decreases P-gp levels and increases the intracellular retention of doxorubicin in Hep3B/PTX cells; in addition, homology structural modeling and molecular docking calculations predicted that Achillin interacts in two regions (M-site and R-site) of transporter drug efflux P-glycoprotein (P-gp). Our results suggest that the chemosensitizer effect demonstrated for Achillin could be associated with P-gp modulation. This work also provides useful information for the development of new therapeutic agents from guaianolide-type sesquiterpene lactones like Achillin.

5.
Mol Med Rep ; 19(3): 2097-2106, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30664221

RESUMO

Cervical cancer is the second most common cancer in women worldwide. Human papillomavirus (HPV) infection appears to be a necessary factor in the development of almost all cases (>95%) of cervical cancer. HPV E6 induces a change of control of p53 stabilization from Hdm2 to E6/E6AP in HPV­infected cells. It is well known that the LxxLL motif of cellular ubiquitin ligase E6AP binds to the pocket of E6 and causes a conformational change to enable E6 to bind p53 competently. In the ternary complex E6/E6AP/p53, p53 is polyubiquitinated by E6AP and subsequently degraded by a proteasome. Therefore, these cells are deficient in the processes regulated by p53, including apoptosis, damaged DNA repair, and the cell cycle. In the present study, it was demonstrated that quercetin induced G2 phase cell cycle arrest and apoptosis in both HeLa and SiHa cells, accompanied by an increase of p53 and its nuclear signal. It was also observed that quercetin increased the level of the p21 transcript and the pro­apoptotic Bax protein, which are two p53­downstream effectors. However, quercetin did not alter the expression of the HPV E6 protein in cervical cancer cells; therefore, the increase in p53 occurred in an E6 expression­independent manner. Furthermore, molecular docking demonstrated that quercetin binds stably in the central pocket of E6, the binding site of E6AP. These data suggest that quercetin increases the nuclear localization of p53 by interrupting E6/E6AP complex formation in cervical cancer cells.


Assuntos
Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/tratamento farmacológico , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose/efeitos dos fármacos , Sítios de Ligação , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Oncogênicas Virais/química , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Quercetina/farmacologia , Proteínas Repressoras/química , Proteína Supressora de Tumor p53/química , Ubiquitina-Proteína Ligases/química , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
6.
Free Radic Biol Med ; 130: 82-98, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342187

RESUMO

Cell movements are essential for morphogenesis during animal development. Epiboly is the first morphogenetic process in zebrafish in which cells move en masse to thin and spread the deep and enveloping cell layers of the blastoderm over the yolk cell. While epiboly has been shown to be controlled by complex molecular networks, the contribution of reactive oxygen species (ROS) to this process has not previously been studied. Here, we show that ROS are required for epiboly in zebrafish. Visualization of ROS in whole embryos revealed dynamic patterns during epiboly progression. Significantly, inhibition of NADPH oxidase activity leads to a decrease in ROS formation, delays epiboly, alters E-cadherin and cytoskeleton patterns and, by 24 h post-fertilization, decreases embryo survival, effects that are rescued by hydrogen peroxide treatment. Our findings suggest that a delicate ROS balance is required during early development and that disruption of that balance interferes with cell adhesion, leading to defective cell motility and epiboly progression.


Assuntos
Blastoderma/metabolismo , Citoesqueleto/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/fisiologia , Animais , Caderinas/metabolismo , Adesão Celular , Movimento Celular , Embrião não Mamífero , Morfogênese , Proteínas de Peixe-Zebra/metabolismo
7.
Molecules ; 24(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577489

RESUMO

By using a zebrafish embryo model to guide the chromatographic fractionation of antimitotic secondary metabolites, seven podophyllotoxin-type lignans were isolated from a hydroalcoholic extract obtained from the steam bark of Bursera fagaroides. The compounds were identified as podophyllotoxin (1), ß-peltatin-A-methylether (2), 5'-desmethoxy-ß-peltatin-A-methylether (3), desmethoxy-yatein (4), desoxypodophyllotoxin (5), burseranin (6), and acetyl podophyllotoxin (7). The biological effects on mitosis, cell migration, and microtubule cytoskeleton remodeling of lignans 1⁻7 were further evaluated in zebrafish embryos by whole-mount immunolocalization of the mitotic marker phospho-histone H3 and by a tubulin antibody. We found that lignans 1, 2, 4, and 7 induced mitotic arrest, delayed cell migration, and disrupted the microtubule cytoskeleton in zebrafish embryos. Furthermore, microtubule cytoskeleton destabilization was observed also in PC3 cells, except for 7. Therefore, these results demonstrate that the cytotoxic activity of 1, 2, and 4 is mediated by their microtubule-destabilizing activity. In general, the in vivo and in vitro models here used displayed equivalent mitotic effects, which allows us to conclude that the zebrafish model can be a fast and cheap in vivo model that can be used to identify antimitotic natural products through bioassay-guided fractionation.


Assuntos
Bursera/química , Citoesqueleto/química , Lignanas/química , Tubulina (Proteína)/química , Animais , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Lignanas/farmacologia , Microtúbulos , Estrutura Molecular , Peixe-Zebra
8.
Molecules ; 22(4)2017 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-28441723

RESUMO

Caesalpinia coriaria (C. coriaria), also named cascalote, has been known traditionally in México for having cicatrizing and inflammatory properties. Phytochemical reports on Caesalpinia species have identified a high content of phenolic compounds and shown antineoplastic effects against cancer cells. The aim of this study was to isolate and identify the active compounds of a water:acetone:ethanol (WAE) extract of C. coriaria pods and characterize their cytotoxic effect and cell death induction in different cancer cell lines. The compounds isolated and identified by chromatography and spectroscopic analysis were stigmasterol, ethyl gallate and gallic acid. Cytotoxic assays on cancer cells showed different ranges of activities. A differential effect on cell cycle progression was observed by flow cytometry. In particular, ethyl gallate and tannic acid induced G2/M phase cell cycle arrest and showed interesting effect on microtubule stabilization in Hep3B cells observed by immunofluorescence. The induction of apoptosis was characterized by morphological characteristic changes, and was supported by increases in the ratio of Bax/Bcl-2 expression and activation of caspase 3/7. This work constitutes the first phytochemical and cytotoxic study of C. coriaria and showed the action of its phenolic constituents on cell cycle, cell death and microtubules organization.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Caesalpinia/química , Extratos Vegetais/farmacologia , Moduladores de Tubulina/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/isolamento & purificação , Ácido Gálico/farmacologia , Células HeLa , Células Hep G2 , Humanos , Concentração Inibidora 50 , Microtúbulos/metabolismo , Extratos Vegetais/isolamento & purificação , Estabilidade Proteica , Taninos/isolamento & purificação , Taninos/farmacologia , Moduladores de Tubulina/isolamento & purificação
9.
Dev Biol ; 421(1): 27-42, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836552

RESUMO

Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics. We address the participation of RhoA and its effector ROCK in germ plasm localization during the transition from two- to eight-cell embryos. We found that active RhoA is enriched along the cleavage furrow during the first two division cycles, whereas ROCK localizes at the distal region of the cleavage furrows in a similar pattern as the germ plasm mRNAs. Specific inhibition of RhoA and ROCK affected microtubules organization at the cleavage furrow; these caused the incorrect localization of the germ plasm mRNAs. The incorrect localization of the germ plasm led to a dramatic change in the number of germ cells during the blastula and 24hpf embryo stages without affecting any other developmental processes. We demonstrate that the Rho/ROCK pathway is intimately related to the determination of germ cells in zebrafish embryos.


Assuntos
Embrião não Mamífero/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Desenvolvimento Embrionário/genética , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
10.
Artigo em Inglês | MEDLINE | ID: mdl-26246833

RESUMO

The cytotoxic activity and the chemical composition of the dichloromethane/methanol root extract of Linum scabrellum Planchon (Linaceae) were analyzed. Using NMR spectra and mass spectrometry analyses of the extract we identified eight main constituents: oleic acid (1), octadecenoic acid (2), stigmasterol (3), α-amyrin (4), pinoresinol (5), 6 methoxypodophyllotoxin (6), coniferin (7), and 6-methoxypodophyllotoxin-7-O-ß-D-glucopyranoside (8). By using the sulforhodamine B assay, an important cytotoxic activity against four human cancer cell lines, HF6 colon (IC50 = 0.57 µg/mL), MCF7 breast (IC50 = 0.56 µg/mL), PC3 prostate (IC50 = 1.60 µg/mL), and SiHa cervical (IC50 = 1.54 µg/mL), as well as toward the normal fibroblasts line HFS-30 IC50 = 1.02 µg/mL was demonstrated. Compound 6 (6-methoxypodophyllotoxin) was responsible for the cytotoxic activity exhibiting an IC50 value range of 0.0632 to 2.7433 µg/mL against the tested cell lines. Cell cycle studies with compound 6 exhibited a cell arrest in G2/M of the prostate PC3 cancer cell line. Microtubule disruption studies demonstrated that compound 6 inhibited the polymerization of tubulin through its binding to the colchicine site (binding constant K b = 7.6 × 10(6) M(-1)). A dose-response apoptotic effect was also observed. This work constitutes the first investigation reporting the chemical composition of L. scabrellum and the first study determining the mechanism of action of compound 6.

11.
Gene Expr Patterns ; 19(1-2): 98-107, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26315538

RESUMO

Antioxidant cellular mechanisms are essential for cell redox homeostasis during animal development and in adult life. Previous in situ hybridization analyses of antioxidant enzymes in zebrafish have indicated that they are ubiquitously expressed. However, spatial information about the protein distribution of these enzymes is not available. Zebrafish embryos are particularly suitable for this type of analysis due to their small size, transparency and fast development. The main objective of the present work was to analyze the spatial and temporal gene expression pattern of the two reported zebrafish glutathione peroxidase 4 (GPx4) genes during the first day of zebrafish embryo development. We found that the gpx4b gene shows maternal and zygotic gene expression in the embryo proper compared to gpx4a that showed zygotic gene expression in the periderm covering the yolk cell only. Following, we performed a GPx4 protein immunolocalization analysis during the first 24-h of development. The detection of this protein suggests that the antibody recognizes GPx4b in the embryo proper during the first 24 h of development and GPx4a at the periderm covering the yolk cell after 14-somite stage. Throughout early cleavages, GPx4 was located in blastomeres and was less abundant at the cleavage furrow. Later, from the 128-cell to 512-cell stages, GPx4 remained in the cytoplasm but gradually increased in the nuclei, beginning in marginal blastomeres and extending the nuclear localization to all blastomeres. During epiboly progression, GPx4b was found in blastoderm cells and was excluded from the yolk cell. After 24 h of development, GPx4b was present in the myotomes particularly in the slow muscle fibers, and was excluded from the myosepta. These results highlight the dynamics of the GPx4 localization pattern and suggest its potential participation in fundamental developmental processes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glutationa Peroxidase/genética , Proteínas de Peixe-Zebra/genética , Animais , Blastoderma/metabolismo , Citocinese , Embrião não Mamífero , Desenvolvimento Embrionário , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/metabolismo , Hibridização In Situ , Isoenzimas , Mesoderma/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Peixe-Zebra , Proteínas de Peixe-Zebra/biossíntese
12.
Dev Biol ; 403(1): 89-100, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25912688

RESUMO

The Zmiz2 (Zimp7) protein and its homolog Zmiz1 (Zimp10) were initially identified in humans as androgen receptor co-activators. Sequence analysis revealed the presence of an SP-RING/Miz domain, which is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. Zimp7 has been shown to interact with components of the Wnt/ß-Catenin signaling pathway and with Brg1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes. In this work, we analyze the role of zygotic Zimp7 in zebrafish development. We describe evidence indicating that Zimp7 is required for mesoderm development and dorsoventral patterning. Morpholino-mediated reduction of zygotic Zimp7 produced axial mesodermal defects that were preceded by up-regulation of organizer genes such as bozozok, goosecoid and floating head at the onset of gastrulation and by down-regulation of the ventral markers vox, vent and eve1 indicating loss of the ventrolateral mesoderm. Consistently, embryos overexpressing zimp7 RNA exhibited midline defects such as loss of forebrain and cyclopia accompanied by transcriptional changes directly opposite of those found in the morphants. In addition, the patterning of ventralized embryos produced by the overexpression of vox and vent was restored by a reduction of Zimp7 activity. Altogether, our findings indicate that Zimp7 is involved in transcriptional regulation of factors that are essential for patterning in the dorsoventral axis.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Organizadores Embrionários/embriologia , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Dedos de Zinco/genética , Animais , Blástula/metabolismo , Gastrulação/genética , Técnicas de Silenciamento de Genes , Proteína Goosecoid/biossíntese , Proteínas de Homeodomínio/biossíntese , Mesoderma/embriologia , Morfolinos/genética , Proteínas Inibidoras de STAT Ativados/genética , RNA Mensageiro/biossíntese , Proteínas Repressoras/biossíntese , Transativadores/genética , Fatores de Transcrição/biossíntese , Transcrição Gênica/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
13.
Anat Rec (Hoboken) ; 296(5): 759-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23554225

RESUMO

Although cell proliferation is an essential cell behavior for animal development, a detailed analysis of spatial and temporal patterns of proliferation in whole embryos are still lacking for most model organisms. Zebrafish embryos are particularly suitable for this type of analysis due to their transparency and size. Therefore, the main objective of the present work was to analyze the spatial and temporal patterns of proliferation during the first day of zebrafish embryo development by indirect immunofluorescence against phosphorylated histone H3, a commonly used mitotic marker. Several interesting findings were established. First, we found that mitosis metasynchrony among blastomeres could begin at the 2- to 4-cell stage embryos. Second, mitosis synchrony was lost before the midblastula transition (MBT). Third, we observed a novel pattern of mitotic clusters that coincided in time with the mitotic pseudo "waves" described to occur before the MBT. Altogether, our findings indicate that early development is less synchronic than anticipated and that synchrony is not a requirement for proper development in zebrafish.


Assuntos
Proliferação de Células , Mitose , Peixe-Zebra/embriologia , Animais , Blastômeros/fisiologia , Gástrula/citologia , Índice Mitótico
14.
Molecules ; 17(8): 9506-19, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22878225

RESUMO

The hydroalcoholic extract of the steam bark of B. fagaroides var. fagaroides displayed potent cytotoxic activity against four cancer cell lines, namely KB (ED50 = 9.6 × 10(-2) µg/mL), PC-3 (ED50 = 2.5 × 10(-1) µg/mL), MCF-7 (ED50 = 6.6 µg/mL), and HF-6 (ED50 = 7.1 × 10(-3) µg/mL). This extract also showed anti-tumour activity when assayed on mice inoculated with L5178Y lymphoma cells. Bioactivity-directed isolation of this extract, afforded seven podophyllotoxin-type lignans identified as podophyllotoxin (1), ß-peltatin-A-methylether (2), 5'-desmethoxy-ß-peltatin-A-methylether (3), desmethoxy-yatein (4), desoxypodophyllotoxin (5), burseranin (6), and acetyl podophyllotoxin (7) by 1D and 2DNMR and FAB-MS analyses, and comparison with reported values. All the isolated compounds showed potent cytotoxic activity in the cell lines tested, especially compound 3, which exhibited greater activity than camptothecin and podophyllotoxin against PC-3 (ED50= 1.0 × 10(-5) µg/mL), and KB (ED50 = 1.0 × 10(-5) µg/mL). This is the first report of the isolation of podophyllotoxin and its acetate in a Bursera species.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Bursera/química , Lignanas/toxicidade , Podofilotoxina/toxicidade , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Humanos , Lignanas/administração & dosagem , Lignanas/química , Lignanas/isolamento & purificação , Linfoma/tratamento farmacológico , Linfoma/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Podofilotoxina/administração & dosagem , Podofilotoxina/isolamento & purificação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Dev Biol ; 320(1): 1-11, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18555213

RESUMO

Oxidative stress is considered causal of aging and pathological cell death, however, very little is known about its function in the natural processes that support the formation of an organism. It is generally thought that cells must continuously protect themselves from the possible damage caused by reactive oxygen species (ROS) (passive ROS function). However, presently, ROS are recognized as physiologically relevant molecules that mediate cell responses to a variety of stimuli, and the activities of several molecules, some developmentally relevant, are directly or indirectly regulated by oxidative stress (active ROS function). Here we review recent data that are suggestive of specific ROS functions during development of animals, particularly mammals.


Assuntos
Desenvolvimento Embrionário , Espécies Reativas de Oxigênio/metabolismo , Animais , Oxirredução , Estresse Oxidativo , Transdução de Sinais
16.
Dev Biol ; 291(2): 291-9, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16445905

RESUMO

Vertebrate limb development is a well-studied model of apoptosis; however, little is known about the intracellular molecules involved in activating the cell death machinery. We have shown that high levels of reactive oxygen species (ROS) are present in the interdigital 'necrotic' tissue of mouse autopod, and that antioxidants can reduce cell death. Here, we determined the expression pattern of several antioxidant enzymes in order to establish their role in defining the areas with high ROS levels. We found that the genes encoding the superoxide dismutases and catalase are expressed in autopod, but they are downregulated in the interdigital regions at the time ROS levels increased and cell death was first detected. The possible role of superoxide and/or peroxide in activating cell death is supported by the protective effect of a superoxide dismutase/catalase mimetic. Interestingly, we found that peroxidase activity and glutathione peroxidase-4 gene (Gpx4) expression were restricted to the non-apoptotic tissue (e.g., digits) of the developing autopod. Induction of cell death with retinoic acid caused an increase in ROS and decrease in peroxidase activity. Even more inhibition of glutathione peroxidase activity leads to cell death in the digits, suggesting that a decrease in antioxidant activity, likely due to Gpx4, caused an increase in ROS levels, thus triggering apoptosis.


Assuntos
Apoptose , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Catalase/genética , Glutationa Peroxidase/fisiologia , Camundongos , RNA Mensageiro/análise , Superóxido Dismutase/genética , Tretinoína/farmacologia
17.
Zebrafish ; 3(4): 441-53, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-18377224

RESUMO

Compared with the increasing use of zebrafish as a model organism in many laboratories, zebrafish cell lines are still unexploited and limited in application, partly due to their unknown genetic and physiological properties. We characterize two zebrafish embryonic fibroblast cell lines, ZF4 and PAC2. We demonstrate the genetic stability of these two zebrafish cell lines and achieved genetic manipulation by either lipid-mediated transfection or an electroporation- based nucleofection method. Data from zebrafish chip analysis (Affymetrix) demonstrate unique characteristics of these two cell lines in gene expression levels, showing that different zebrafish cell lines can be classified by their transcriptome profile. Their transcriptional responses to serum growth factor exposure suggest that zebrafish fibroblast cell lines may be used to study processes related to wound-healing or cancer.

18.
Genomics ; 86(1): 25-37, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15894457

RESUMO

The zebrafish genomic sequence database was analyzed for the presence of genes encoding members of the Rho small GTPases. The analysis shows the presence of 32 zebrafish Rho genes representing one or more homologs of the human RHOA, RND3, RHOF, RHOG, RHOH, RHOJ, RHOU, RHOV, CDC42, RAC1, RAC2, RAC3, RND1, RHOBTB1, RHOBTB2, RHOBTB3, and RHOT1 genes. By expression analysis using reverse transcriptase-PCR we show that at least 20 of the predicted zebrafish small GTPase genes are expressed in the adult stage. Interestingly, only 5 of these were found to be expressed at early embryonic stages, including rhoab, rhoad, cdc42a, cdc42c, and rac1a. We observed a strong upregulation of zebrafish rhogb expression after Mycobacterium marinum infection of adult fish. This complete annotation study provides a firm basis for the use of zebrafish as a model for analysis of Rho GTPase function in vertebrate development and the innate immune system.


Assuntos
Perfilação da Expressão Gênica , Infecções por Mycobacterium não Tuberculosas/microbiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Proteínas rho de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , DNA Complementar/química , DNA Complementar/genética , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Genoma , Genoma Humano , Genômica/métodos , Genômica/estatística & dados numéricos , Humanos , Dados de Sequência Molecular , Família Multigênica/genética , Infecções por Mycobacterium não Tuberculosas/genética , Mycobacterium marinum/crescimento & desenvolvimento , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/microbiologia
19.
Mol Immunol ; 42(10): 1185-203, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15829308

RESUMO

The Mycobacterium marinum-zebrafish infection model was used in this study for analysis of a host transcriptome response to mycobacterium infection at the organismal level. RNA isolated from adult zebrafish that showed typical signs of fish tuberculosis due to a chronic progressive infection with M. marinum was compared with RNA from healthy fish in microarray analyses. Spotted oligonucleotide sets (designed by Sigma-Compugen and MWG) and Affymetrix GeneChips were used, in total comprising 45,465 zebrafish transcript annotations. Based on a detailed comparative analysis and quantitative reverse transcriptase-PCR analysis, we present a validated reference set of 159 genes whose regulation is strongly affected by mycobacterial infection in the three types of microarrays analyzed. Furthermore, we analyzed the separate datasets of the microarrays with special emphasis on the expression profiles of immune-related genes. Upregulated genes include many known components of the inflammatory response and several genes that have previously been implicated in the response to mycobacterial infections in cell cultures of other organisms. Different marker genes of the myeloid lineage that have been characterized in zebrafish also showed increased expression. Furthermore, the zebrafish homologs of many signal transduction genes with relationship to the immune response were induced by M. marinum infection. Future functional analysis of these genes may contribute to understanding the mechanisms of mycobacterial pathogenesis. Since a large group of genes linked to immune responses did not show altered expression in the infected animals, these results suggest specific responses in mycobacterium-induced disease.


Assuntos
Perfilação da Expressão Gênica , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/patogenicidade , Transcrição Gênica , Tuberculose/microbiologia , Peixe-Zebra/genética , Animais , Biomarcadores , Doença Crônica , Modelos Animais de Doenças , Expressão Gênica , Inflamação/genética , Masculino , Análise em Microsséries , Infecções por Mycobacterium não Tuberculosas/genética , Mycobacterium marinum/genética , RNA/análise , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Tempo , Tuberculose/genética , Tuberculose/patologia , Regulação para Cima/genética , Peixe-Zebra/microbiologia
20.
Dev Biol ; 265(1): 75-89, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14697354

RESUMO

During mammalian development, the first cell lineage diversification event occurs in the blastocyst, when the trophectoderm (TE) and the inner cell mass (ICM) become established. Part of the TE (polar) remains in contact with the ICM and differs from the mural TE (mTE) which is separated from the ICM by a cavity known as the blastocoele. The presence of filopodia connecting ICM cells with the distant mural TE cells through the blastocoelic fluid was investigated in this work. We describe two types of actin-based cell projections found in freshly dissected and in vitro cultured expanding blastocysts: abundant short filopodia projecting into the blastocoelic cavity that present a continuous undulating behavior; and long, thin traversing filopodia connecting the mural TE with the ICM. Videomicroscopy analyses revealed the presence of vesicle-like structures moving along traversing filopodia and dynamic cytoskeletal rearrangements. These observations, together with immunolocalization of the FGFR2 and the ErbB3 receptors to these cell extensions, suggest that they display signal transduction activity. We propose that traversing filopodia are employed by mitotic mTE cells to receive the required signals for cell division after they become distant to the ICM.


Assuntos
Blastocisto/fisiologia , Pseudópodes/fisiologia , Transdução de Sinais , Actinas/fisiologia , Animais , Blastocisto/citologia , Imunofluorescência , Camundongos , Microscopia Confocal , Microscopia de Vídeo , Modelos Biológicos , Pseudópodes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...