Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583530

RESUMO

Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been shown to affect the development of sea urchins and, to some extent, mussels. The extent of those developmental effects on other animal phyla remains unknown. Here, we test the toxicity of environmental mixed nurdle samples and new PVC pellets for the embryonic development or asexual reproduction by regeneration of animals from all the major animal superphyla (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse, concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially, morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study serves as a proof of principle for the potentially catastrophic effects that increasing plastic concentrations in the oceans and other ecosystems can have across animal populations from all major animal superphyla.


Assuntos
Invertebrados , Microplásticos , Plásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Plásticos/toxicidade , Invertebrados/efeitos dos fármacos , Microplásticos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos
2.
BMC Genomics ; 23(1): 349, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524177

RESUMO

BACKGROUND: Real-time quantitative PCR is a widely used method for gene expression analyses in various organisms. Its accuracy mainly relies on the correct selection of reference genes. Any experimental plan involving real-time PCR needs to evaluate the characteristics of the samples to be examined and the relative stability of reference genes. Most studies in mollusks rely on reference genes commonly used in vertebrates. RESULTS: In this study, we focused on the transcriptome of the bivalve mollusk Mytilus galloprovincialis in physiological state to identify suitable reference genes in several adult tissues. Candidate genes with highly stable expression across 51 RNA-seq datasets from multiple tissues were selected through genome-wide bioinformatics analysis. This approach led to the identification of three genes (Rpl14, Rpl32 and Rpl34), whose suitability was evaluated together with 7 other reference genes commonly reported in literature (Act, Cyp-A, Ef1α, Gapdh, 18S, 28S and Rps4). The stability analyses performed with geNorm, NormFinder and Bestkeeper identified specific either single or pairs of genes suitable as references for gene expression analyses in specific tissues and revealed the Act/Cyp-A pair as the most appropriate to analyze gene expression across different tissues. CONCLUSION: Mytilus galloprovincialis is a model system increasingly used in ecotoxicology and molecular studies. Our transcriptome-wide approach represents the first comprehensive investigation aimed at the identification of suitable reference genes for expression studies in this species.


Assuntos
Perfilação da Expressão Gênica , Mytilus , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Mytilus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Transcriptoma
3.
Front Cell Dev Biol ; 9: 709696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414189

RESUMO

The Activator Protein-1 transcription factor family (AP-1) transcriptional complex is historically defined as an early response group of transcription factors formed by dimeric complexes of the Jun, Fos, Atf, and Maf bZIP proteins that control cell proliferation and differentiation by regulating gene expression. It has been greatly investigated in many model organisms across metazoan evolution. Nevertheless, its complexity and variability of action made its multiple functions difficult to be defined. Here, we place the foundations for understanding the complexity of AP-1 transcriptional members in tunicates. We investigated the gene members of this family in the ascidian Ciona robusta and identified single copies of Jun, Fos, Atf3, Atf2/7, and Maf bZIP-related factors that could have a role in the formation of the AP-1 complex. We highlight that mesenchyme is a common cellular population where all these factors are expressed during embryonic development, and that, moreover, Fos shows a wider pattern of expression including also notochord and neural cells. By ectopic expression in transgenic embryos of Jun and Fos genes alone or in combination, we investigated the phenotypic alterations induced by these factors and highlighted a degree of functional conservation of the AP-1 complex between Ciona and vertebrates. The lack of gene redundancy and the first pieces of evidence of conserved functions in the control of cell movements and structural organization exerted by these factors open the way for using Ciona as a helpful model system to uncover the multiple potentialities of this highly complex family of bZIP transcription factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...