Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Leukoc Biol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630873

RESUMO

Regulatory T cells (Tregs) play a crucial role in the homeostasis of the immune response. Tregs are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the Treg master transcription factor. In addition, Tregs can be induced from naïve CD4+ T cells to express Foxp3 under specific conditions both in vivo (pTregs) and in vitro (iTregs). Both subsets tTregs and pTregs are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that iTregs may be less stable compared to tTregs, mainly due to epigenetic differences, accumulating evidence in animal models shows that iTregs are stable in vivo and could be used for the treatment of inflammatory disorders including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced T regs, the key factors involved in iTreg transcriptional, metabolic and epigenetic regulation and discuss recent advances for de novo generation of stable Tregs and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of iTregs in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.

2.
Arch Med Res ; 55(2): 102960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290199

RESUMO

BACKGROUND: SARS-CoV2 induces flu-like symptoms that can rapidly progress to severe acute lung injury and even death. The virus also invades the central nervous system (CNS), causing neuroinflammation and death from central failure. Intravenous (IV) or oral dexamethasone (DXM) reduced 28 d mortality in patients who required supplemental oxygen compared to those who received conventional care alone. Through these routes, DMX fails to reach therapeutic levels in the CNS. In contrast, the intranasal (IN) route produces therapeutic levels of DXM in the CNS, even at low doses, with similar systemic bioavailability. AIMS: To compare IN vs. IV DXM treatment in hospitalized patients with COVID-19. METHODS: A controlled, multicenter, open-label trial. Patients with COVID-19 (69) were randomly assigned to receive IN-DXM (0.12 mg/kg for three days, followed by 0.6 mg/kg for up to seven days) or IV-DXM (6 mg/d for 10 d). The primary outcome was clinical improvement, as defined by the National Early Warning Score (NEWS) ordinal scale. The secondary outcome was death at 28 d between IV and IN patients. Effects of both treatments on biochemical and immunoinflammatory profiles were also recorded. RESULTS: Initially, no significant differences in clinical severity, biometrics, and immunoinflammatory parameters were found between both groups. The NEWS-2 score was reduced, in 23 IN-DXM treated patients, with no significant variations in the 46 IV-DXM treated ones. Ten IV-DXM-treated patients and only one IN-DXM patient died. CONCLUSIONS: IN-DMX reduced NEWS-2 and mortality more efficiently than IV-DXM, suggesting that IN is a more efficient route of DXM administration.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , RNA Viral , Tratamento Farmacológico da COVID-19 , Dexametasona/uso terapêutico
3.
Front Immunol ; 14: 1062456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911743

RESUMO

The development of new strategies based on the use of Tr1 cells has taken relevance to induce long-term tolerance, especially in the context of allogeneic stem cell transplantation. Although Tr1 cells are currently identified by the co-expression of CD49b and LAG-3 and high production of interleukin 10 (IL-10), recent studies have shown the need for a more exhaustive characterization, including co-inhibitory and chemokines receptors expression, to ensure bona fide Tr1 cells to be used as cell therapy in solid organ transplantation. Moreover, the proinflammatory environment induced by the allograft could affect the suppressive function of Treg cells, therefore stability of Tr1 cells needs to be further investigated. Here, we establish a new protocol that allows long-term in vitro expansion of highly purified expanded allospecific Tr1 (Exp-allo Tr1). Our expanded Tr1 cell population becomes highly enriched in IL-10 producers (> 90%) and maintains high expression of CD49b and LAG-3, as well as the co-inhibitory receptors PD-1, CTLA-4, TIM-3, TIGIT and CD39. Most importantly, high dimensional analysis of Exp-allo Tr1 demonstrated a specific expression profile that distinguishes them from activated conventional T cells (T conv), showing overexpression of IL-10, CD39, CTLA-4 and LAG-3. On the other hand, Exp-allo Tr1 expressed a chemokine receptor profile relevant for allograft homing and tolerance induction including CCR2, CCR4, CCR5 and CXCR3, but lower levels of CCR7. Interestingly, Exp-allo Tr1 efficiently suppressed allospecific but not third-party T cell responses even after being expanded in the presence of proinflammatory cytokines for two extra weeks, supporting their functional stability. In summary, we demonstrate for the first time that highly purified allospecific Tr1 (Allo Tr1) cells can be efficiently expanded maintaining a stable phenotype and suppressive function with homing potential to the allograft, so they may be considered as promising therapeutic tools for solid organ transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Órgãos , Linfócitos T Reguladores/metabolismo , Interleucina-10/metabolismo , Antígeno CTLA-4/metabolismo , Integrina alfa2/metabolismo
4.
F1000Res ; 11: 164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360826

RESUMO

Atmospheric nitrogen fixation carried out by microorganisms has environmental and industrial importance, related to the increase of soil fertility and productivity. The present work proposes the development of a new high precision system that allows the recognition of amino acid sequences of the nitrogenase enzyme (NifH) as a promising way to improve the identification of diazotrophic bacteria. For this purpose, a database obtained from UniProt built a processed dataset formed by a set of 4911 and 4782 amino acid sequences of the NifH and non-NifH proteins respectively. Subsequently, the feature extraction was developed using two methodologies: (i) k-mers counting and (ii) embedding layers to obtain numerical vectors of the amino acid chains. Afterward, for the embedding layer, the data was crossed by an external trainable convolutional layer, which received a uniform matrix and applied convolution using filters to obtain the feature maps of the model. Finally, a deep neural network was used as the primary model to classify the amino acid sequences as NifH protein or not. Performance evaluation experiments were carried out, and the results revealed an accuracy of 96.4%, a sensitivity of 95.2%, and a specificity of 96.7%. Therefore, an amino acid sequence-based feature extraction method that uses a neural network to detect N-fixing organisms is proposed and implemented. NIFtHool is available from: https://nifthool.anvil.app/.


Assuntos
Bactérias , Redes Neurais de Computação , Oxirredutases , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Informática , Oxirredutases/genética , Filogenia
5.
Trials ; 23(1): 148, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164840

RESUMO

BACKGROUND: By end December of 2021, COVID-19 has infected around 276 million individuals and caused over 5 million deaths worldwide. Infection results in dysregulated systemic inflammation, multi-organ dysfunction, and critical illness. Cells of the central nervous system are also affected, triggering an uncontrolled neuroinflammatory response. Low doses of glucocorticoids, administered orally or intravenously, reduce mortality among moderate and severe COVID-19 patients. However, low doses administered by these routes do not reach therapeutic levels in the CNS. In contrast, intranasally administered dexamethasone can result in therapeutic doses in the CNS even at low doses. METHODS: This is an approved open-label, multicenter, randomized controlled trial to compare the effectiveness of intranasal versus intravenous dexamethasone administered in low doses to moderate and severe COVID-19 adult patients. The protocol is conducted in five health institutions in Mexico City. A total of 120 patients will be randomized into two groups (intravenous vs. intranasal) at a 1:1 ratio. Both groups will be treated with the corresponding dexamethasone scheme for 10 days. The primary outcome of the study will be clinical improvement, defined as a statistically significant reduction in the NEWS-2 score of patients with intranasal versus intravenous dexamethasone administration. The secondary outcome will be the reduction in mortality during hospitalization. CONCLUSIONS: This protocol is currently in progress to improve the efficacy of the standard therapeutic dexamethasone regimen for moderate and severe COVID-19 patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04513184 . Registered November 12, 2020. Approved by La Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS) with identification number DI/20/407/04/36. People are currently being recruited.


Assuntos
Tratamento Farmacológico da COVID-19 , Dexametasona/efeitos adversos , Humanos , Inflamação , Doenças Neuroinflamatórias , SARS-CoV-2 , Resultado do Tratamento
6.
Front Immunol ; 12: 686530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777330

RESUMO

The adoptive transfer of alloantigen-specific regulatory T cells (alloTregs) has been proposed as a therapeutic alternative in kidney transplant recipients to the use of lifelong immunosuppressive drugs that cause serious side effects. However, the clinical application of alloTregs has been limited due to their low frequency in peripheral blood and the scarce development of efficient protocols to ensure their purity, expansion, and stability. Here, we describe a new experimental protocol that allows the long-term expansion of highly purified allospecific natural Tregs (nTregs) from both healthy controls and chronic kidney disease (CKD) patients, which maintain their phenotype and suppressive function under inflammatory conditions. Firstly, we co-cultured CellTrace Violet (CTV)-labeled Tregs from CKD patients or healthy individuals with allogeneic monocyte-derived dendritic cells in the presence of interleukin 2 (IL-2) and retinoic acid. Then, proliferating CD4+CD25hiCTV- Tregs (allospecific) were sorted by fluorescence-activated cell sorting (FACS) and polyclonally expanded with anti-CD3/CD28-coated beads in the presence of transforming growth factor beta (TGF-ß), IL-2, and rapamycin. After 4 weeks, alloTregs were expanded up to 2,300 times the initial numbers with a purity of >95% (CD4+CD25hiFOXP3+). The resulting allospecific Tregs showed high expressions of CTLA-4, LAG-3, and CD39, indicative of a highly suppressive phenotype. Accordingly, expanded alloTregs efficiently suppressed T-cell proliferation in an antigen-specific manner, even in the presence of inflammatory cytokines (IFN-γ, IL-4, IL-6, or TNF-α). Unexpectedly, the long-term expansion resulted in an increased methylation of the specific demethylated region of Foxp3. Interestingly, alloTregs from both normal individuals and CKD patients maintained their immunosuppressive phenotype and function after being expanded for two additional weeks under an inflammatory microenvironment. Finally, phenotypic and functional evaluation of cryopreserved alloTregs demonstrated the feasibility of long-term storage and supports the potential use of this cellular product for personalized Treg therapy in transplanted patients.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Isoantígenos/imunologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Biomarcadores , Microambiente Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Suscetibilidade a Doenças , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Fenótipo , Insuficiência Renal Crônica/diagnóstico , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
7.
Methods Mol Biol ; 2174: 219-244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32813253

RESUMO

The use of immunotherapy as an alternative treatment for cancer patients has become of great interest in the scientific community as it is required to overcome many of the currently unsolved problems such as tumor escape, immunosuppression and unwanted unspecific toxicity. The use of chimeric antigen receptor T cells has been a very successful strategy in some hematologic malignancies. However, the application of CAR T cells has been limited to solid tumors, and this has aimed the development of new generation of CARs with enhanced effectivity and specificity. Here, we review the state of the art of CAR T cell therapy with special emphasis on the current challenges and opportunities.


Assuntos
Transplante de Células/efeitos adversos , Transplante de Células/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos , Linfócitos T/fisiologia , Genes Transgênicos Suicidas , Neoplasias Hematológicas/terapia , Humanos , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia
8.
Front Immunol ; 11: 375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300340

RESUMO

Regulatory T cells play an important role in the control of autoimmune diseases and maintenance of tolerance. In the context of transplantation, regulatory T cells (Tregs) have been proposed as new therapeutic tools that may induce allospecific tolerance toward the graft, avoiding the side effects induced by generalized immunosuppressors. Although most clinical trials are based on the use of thymic Tregs in adoptive therapy, some reports suggest the potential use of in vitro induced Tregs (iTregs), based on their functional stability under inflammatory conditions, indicating an advantage in a setting of allograft rejection. The aim of this work was to generate and expand large numbers of allospecific Tregs that maintain stable suppressive function in the presence of pro-inflammatory cytokines. Dendritic cells were derived from monocytes isolated from healthy donors and were co-cultured with CTV-labeled naïve T cells from unrelated individuals, in the presence of TGF-ß1, IL-2, and retinoic acid. After 7 days of co-culture, proliferating CD4+CD25++CTV- cells (allospecific iTregs) were sorted and polyclonally expanded for 6 weeks in the presence of TGF-ß1, IL-2, and rapamycin. After 6 weeks of polyclonal activation, iTregs were expanded 230,000 times, giving rise to 4,600 million allospecific iTregs. Allospecific iTregs were able to specifically suppress the proliferation of autologous CD4+ and CD8+ T cells in response to the allo-MoDCs used for iTreg generation, but not to third-party allo-MoDCs. Importantly, 88.5% of the expanded cells were CD4+CD25+FOXP3+, expressed high levels of CCR4 and CXCR3, and maintained their phenotype and suppressive function in the presence of TNF-α and IL-6. Finally, analysis of the methylation status of the FOXP3 TSDR locus demonstrated a 40% demethylation in the purified allospecific iTreg, prior to the polyclonal expansion. Interestingly, the phenotype and suppressive activity of expanded allospecific iTregs were maintained after 6 weeks of expansion, despite an increase in the methylation status of the FOXP3 TSDR. In conclusion, this is the first report that demonstrates a large-scale generation of allospecific iTregs that preserve a stable phenotype and suppressor function in the presence of pro-inflammatory cytokines and pave the way for adoptive cell therapy with iTregs in transplanted patients.


Assuntos
Células Alógenas/imunologia , Técnicas de Cultura de Células/métodos , Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/imunologia , Células Alógenas/citologia , Humanos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/transplante
9.
Biochem Biophys Res Commun ; 494(1-2): 82-87, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29050936

RESUMO

TGF-ß type III receptor (TßRIII) is a co-receptor for TGFß family members required for high-affinity binding of these ligands to their receptors, potentiating their cellular functions. TGF-ßs, Bone Morphogenetic Proteins (BMP2/4) and Inhibins/Activins regulate different checkpoints during T cell differentiation. We have previously reported that TßRIII modulates T cell development by protecting developing thymocytes from apoptosis, however the role of this co-receptor in peripheral lymphocytes still remains elusive. Here we describe a detailed characterization of TßRIII expression in murine and human lymphocyte subpopulations demonstrating that this co-receptor is significantly expressed in T but not B lymphocytes and among them, preferentially expressed on naïve and central memory T cells. TßRIII was upregulated after TCR stimulation, in parallel to other early activation markers. In contrast, natural and induced Tregs downregulated TßRIII in association with FoxP3 upregulation. Finally, anti-TßRIII blocking experiments demonstrated that TßRIII promotes TGFß-dependent iTreg conversion in vitro, and suggest that this co-receptor may be involved in modulating peripheral T cell tolerance and could be considered as a potential target to boost T cell immune responses.


Assuntos
Proteoglicanas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Memória Imunológica , Técnicas In Vitro , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Linfócitos T Reguladores/classificação , Linfócitos T Reguladores/metabolismo , Regulação para Cima
10.
Front Immunol ; 8: 219, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28316600

RESUMO

Regulatory T cells (Tregs) are considered key players in the prevention of allograft rejection in transplanted patients. Belatacept (BLT) is an effective alternative to calcineurin inhibitors that appears to preserve graft survival and function; however, the impact of this drug in the homeostasis of Tregs in transplanted patients remains controversial. Here, we analyzed the phenotype, function, and the epigenetic status of the Treg-specific demethylated region (TSDR) in FOXP3 of circulating Tregs from long-term kidney transplant patients under BLT or Cyclosporine A treatment. We found a significant reduction in the proportion of CD4+CD25hiCD127lo/-FOXP3+ T cells in all patients compared to healthy individual (controls). Interestingly, only BLT-treated patients displayed an enrichment of the CD45RA+ "naïve" Tregs, while the expression of Helios, a marker used to identify stable FOXP3+ thymic Tregs remained unaffected. Functional analysis demonstrated that Tregs from transplanted patients displayed a significant reduction in their suppressive capacity compared to Tregs from controls, which is associated with decreased levels of FOXP3 and CD25. Analysis of the methylation status of the FOXP3 gene showed that BLT treatment results in methylation of CpG islands within the TSDR, which could be associated with the impaired Treg suppression function. Our data indicate that analysis of circulating Tregs cannot be used as a marker for assessing tolerance toward the allograft in long-term kidney transplant patients. Trial registration number IM103008.

11.
Genetics ; 181(2): 525-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19033154

RESUMO

Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Dopamina/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Feminino , Genes de Insetos , Infertilidade/genética , Infertilidade/metabolismo , Masculino , Mutação , Junção Neuromuscular/metabolismo , Octopamina/metabolismo , Oogênese/genética , Fenótipo , Fotobiologia , Serotonina/metabolismo
12.
Med. priv ; 8(4): 85-90, 1992. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-124025

RESUMO

Se presenta un análisis retrospectivo de 36 casos de desprendimiento prematuro de placenta (DPP), sintomáticos o no, que fueron clasificados en leve, moderado o severo de acuerdo al área de desprendimiento (<25%, 25-50%,> 50% respectivamente). La incidencia de DPP encontrada fue de 0.25%, con una morbilidad fetal del 55.5%. Las complicaciones más frecuentes fueron la anemia y la coagulación intravascular diseminada, diagnosticadas por laboratorio. Con respecto al momento de presentarse el DPP el 66.67% no se encontraba en trabajo de parto activo. El sangrado genital como signo y síntoma se reportó en el 67.11%, seguido por el dolor abdominal en el 56% de los casos. La enfermedad más frecuentemente asociada al accidente placentario fue la hipertención inducida por el embarazo en 9 pacientes (25%), con 2 casos de eclampsia (22.22%). Se revisa la literatura nacional e internacional


Assuntos
Gravidez , Humanos , Feminino , Descolamento Prematuro da Placenta/epidemiologia , Descolamento Prematuro da Placenta/complicações , Descolamento Prematuro da Placenta/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...