Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 33(4): 722-730, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29653023

RESUMO

γ-Aminobutyric acid (GABA) is a well-known neurotransmitter that regulates inhibitory neurotransmission in the mammalian central nervous system and participates in several processes outside the brain. A reliable quantification method is needed to determine its role in different physiological and pathological conditions. However, GABA measurements have several challenges because GABA is neither fluorescent nor electroactive, and it is difficult to detect using enzymatic reactions because no oxidases or dehydrogenases have been identified. Several methods have been developed to quantify GABA concentrations based on the instrumentation available, the sensitivity required, and the volume of samples analyzed. Most of these methods use high-performance liquid chromatography (HPLC). Here, we describe a method for quantifying GABA concentrations in small volume samples using enzymatically-induced electrochemiluminescence with the well-known GABAse complex, which produces glutamate for use in a luminescent reaction with glutamate oxidase and luminol in an electrochemiluminescence cell. The luminescence obtained was proportional to the GABA concentrations in the micromolar range (1-1000), with linear r2 values > 0.95. GABA standards were treated with the enzymatic reactors to generate glutamate (Glu), which was measured simultaneously with an HPLC technique, to validate this new procedure. The assay was further used to determine GABA concentrations in hippocampal extracts. This alternative may be used to quantify GABA levels in fluid samples, such as microdialysates, other perfusates and tissue extracts. Thus, the method presented here is a good alternative for monitoring GABA levels with good sensitivity compared with the traditional methods that are still in use.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Aldeído Oxirredutases/metabolismo , Técnicas Eletroquímicas , Luminescência , Ácido gama-Aminobutírico/análise , 4-Aminobutirato Transaminase/química , Aldeído Oxirredutases/química , Animais , Masculino , Ratos , Ratos Wistar , Análise de Regressão , Ácido gama-Aminobutírico/metabolismo
2.
Curr Neuropharmacol ; 12(6): 490-508, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25977677

RESUMO

To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...