Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am Nat ; 203(6): 726-735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781524

RESUMO

AbstractIn the world's highest mountain ranges, uncertainty about the upper elevational range limits of alpine animals represents a critical knowledge gap regarding the environmental limits of life and presents a problem for detecting range shifts in response to climate change. Here we report results of mountaineering mammal surveys in the Central Andes, which led to the discovery of multiple species of mice living at extreme elevations that far surpass previously assumed range limits for mammals. We livetrapped small mammals from ecologically diverse sites spanning >6,700 m of vertical relief, from the desert coast of northern Chile to the summits of the highest volcanoes in the Andes. We used molecular sequence data and whole-genome sequence data to confirm the identities of species that represent new elevational records and to test hypotheses regarding species limits. These discoveries contribute to a new appreciation of the environmental limits of vertebrate life.


Assuntos
Altitude , Animais , Camundongos/genética , Camundongos/fisiologia , Chile , Filogenia , Distribuição Animal
2.
Microorganisms ; 11(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764092

RESUMO

Protozoan parasites are known for their remarkable capacity to persist within the bodies of vertebrate hosts, which frequently results in prolonged infections and the recurrence of diseases. Understanding the molecular mechanisms that underlie the event of persistence is of paramount significance to develop innovative therapeutic approaches, given that these pathways still need to be thoroughly elucidated. The present article provides a comprehensive overview of the latest developments in the investigation of protozoan persistence in vertebrate hosts. The focus is primarily on the function of persisters, their formation within the host, and the specific molecular interactions between host and parasite while they persist. Additionally, we examine the metabolomic, transcriptional, and translational changes that protozoan parasites undergo during persistence within vertebrate hosts, focusing on major parasites such as Plasmodium spp., Trypanosoma spp., Leishmania spp., and Toxoplasma spp. Key findings of our study suggest that protozoan parasites deploy several molecular and physiological strategies to evade the host immune surveillance and sustain their persistence. Furthermore, some parasites undergo stage differentiation, enabling them to acclimate to varying host environments and immune challenges. More often, stressors such as drug exposure were demonstrated to impact the formation of protozoan persisters significantly. Understanding the molecular mechanisms regulating the persistence of protozoan parasites in vertebrate hosts can reinvigorate our current insights into host-parasite interactions and facilitate the development of more efficacious disease therapeutics.

3.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662254

RESUMO

In the world's highest mountain ranges, uncertainty about the upper elevational range limits of alpine animals represents a critical knowledge gap regarding the environmental limits of life and presents a problem for detecting range shifts in response to climate change. Here we report results of mountaineering mammal surveys in the Central Andes, which led to the discovery of multiple species of mice living at extreme elevations that far surpass previously assumed range limits for mammals. We live-trapped small mammals from ecologically diverse sites spanning >6700 m of vertical relief, from the desert coast of northern Chile to the summits of the highest volcanoes in the Andes. We used molecular sequence data and whole-genome sequence data to confirm the identities of species that represent new elevational records and to test hypotheses regarding species limits. These discoveries contribute to a new appreciation of the environmental limits of vertebrate life.

4.
BMC Microbiol ; 23(1): 51, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36858951

RESUMO

BACKGROUND: Host associated gut microbiota are important in understanding the coevolution of host-microbe, and how they may help wildlife populations to adapt to rapid environmental changes. Mammalian gut microbiota composition and diversity may be affected by a variety of factors including geographic variation, seasonal variation in diet, habitat disturbance, environmental conditions, age, and sex. However, there have been few studies that examined how ecological and environmental factors influence gut microbiota composition in animals' natural environments. In this study, we explore how host habitat, geographical location and environmental factors affect the fecal microbiota of Cynomys ludovicianus at a small spatial scale. We collected fecal samples from five geographically distinct locations in the Texas Panhandle classified as urban and rural areas and analyzed them using high throughput 16S rRNA gene amplicon sequencing. RESULTS: The results showed that microbiota of these fecal samples was largely dominated by the phylum Bacteroidetes. Fecal microbiome diversity and composition differed significantly across sampling sites and habitats. Prairie dogs inhabiting urban areas showed reduced fecal diversity due to more homogenous environment and, likely, anthropogenic disturbance. Urban prairie dog colonies displayed greater phylogenetic variation among replicates than those in rural habitats. Differentially abundant analysis revealed that bacterial species pathogenic to humans and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal microbiome composition. Despite the effects of habitat and geographic location of host, we found a strong correlation with environmental factors and that- average maximum temperature was the best predictor of prairie dog fecal microbial diversity. CONCLUSIONS: Our findings suggest that reduction in alpha diversity in conjunction with greater dispersion in beta diversity could be indicative of declining host health in urban areas; this information may, in turn, help determine future conservation efforts. Moreover, several bacterial species pathogenic to humans and other animals were enriched in prairie dog colonies near urban areas, which may in turn adversely affect host phenotype and fitness.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Filogenia , RNA Ribossômico 16S , Sciuridae
5.
PeerJ ; 11: e14319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655048

RESUMO

Ichthyomyini, a morphologically distinctive group of Neotropical cricetid rodents, lacks an integrative study of its systematics and biogeography. Since this tribe is a crucial element of the Sigmodontinae, the most speciose subfamily of the Cricetidae, we conducted a study that includes most of its recognized diversity (five genera and 19 species distributed from southern Mexico to northern Bolivia). For this report we analyzed a combined matrix composed of four molecular markers (RBP3, GHR, RAG1, Cytb) and 56 morphological traits, the latter including 15 external, 14 cranial, 19 dental, five soft-anatomical and three postcranial features. A variety of results were obtained, some of which are inconsistent with the currently accepted classification and understanding of the tribe. Ichthyomyini is retrieved as monophyletic, and it is divided into two main clades that are here recognized as subtribes: one to contain the genus Anotomys and the other composed by the remaining genera. Neusticomys (as currently recognized) was found to consist of two well supported clades, one of which corresponds to the original concept of Daptomys. Accordingly, we propose the resurrection of the latter as a valid genus to include several species from low to middle elevations and restrict Neusticomys to several highland forms. Numerous other revisions are necessary to reconcile the alpha taxonomy of ichthyomyines with our phylogenetic results, including placement of the Cajas Plateau water rat (formerly Chibchanomys orcesi) in the genus Neusticomys (sensu stricto), and the recognition of at least two new species (one in Neusticomys, one in Daptomys). Additional work is necessary to confirm other unanticipated results, such as the non-monophyletic nature of Rheomys and the presence of a possible new genus and species from Peru. Our results also suggest that ichthyomyines are one of the main Andean radiations of sigmodontine cricetids, with an evolutionary history dating to the Late Miocene and subsequent cladogenesis during the Pleistocene.


Assuntos
Arvicolinae , Sigmodontinae , Animais , Filogenia , Evolução Biológica , Peru
6.
Sci Rep ; 8(1): 9018, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899544

RESUMO

Bats (Order: Chiroptera) harbor a high diversity of emerging pathogens presumably because their ability to fly and social behavior favor the maintenance, evolution, and dissemination of these pathogens. Until 2012, there was only one report of the presence of Hantavirus in bats. Historically, it was thought that these viruses were harbored primarily by rodent and insectivore small mammals. Recently, new species of hantaviruses have been identified in bats from Africa and Asia continents expanding the potential reservoirs and range of these viruses. To assess the potential of Neotropical bats as hosts for hantaviruses and its transmission dynamics in nature, we tested 53 bats for active hantaviral infection from specimens collected in Southeastern Brazil. Part of the hantaviral S segment was amplified from the frugivorous Carollia perspicillata and the common vampire bat Desmodus rotundus. DNA sequencing showed high similarity with the genome of Araraquara orthohantavirus (ARQV), which belongs to one of the more lethal hantavirus clades (Andes orthohantavirus). ARQV-like infection was detected in the blood, urine, and organs of D. rotundus. Therefore, we describe a systemic infection in Neotropical bats by a human pathogenic Hantavirus. We also propose here a schematic transmission dynamics of hantavirus in the study region. Our results give insights to new, under-appreciated questions that need to be addressed in future studies to clarify hantavirus transmission in nature and avoid hantavirus outbreaks.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/virologia , Infecções por Hantavirus/virologia , Orthohantavírus/fisiologia , Animais , Brasil , Quirópteros/sangue , Quirópteros/classificação , Variação Genética , Geografia , Orthohantavírus/classificação , Orthohantavírus/genética , Infecções por Hantavirus/sangue , Infecções por Hantavirus/transmissão , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Análise de Sequência de DNA
7.
Thomson, Scott A; Pyle, Richard L; Ahyong, Shane T; Alonso-Zarazaga, Miguel; Ammirati, Joe; Araya, Juan Francisco; Ascher, John S; Audisio, Tracy Lynn; Azevedo-Santos, Valter M; Bailly, Nicolas; Baker, William J; Balke, Michael; Barclay, Maxwell V. L; Barrett, Russell L; Benine, Ricardo C; Bickerstaff, James R. M; Bouchard, Patrice; Bour, Roger; Bourgoin, Thierry; Boyko, Christopher B; Breure, Abraham S. H; Brothers, Denis J; Byng, James W; Campbell, David; Ceriaco, Luis M. P; Cernak, Istvan; Cerretti, Pierfilippo; Chang, Chih-Han; Cho, Soowon; Copus, Joshua M; Costello, Mark J; Cseh, Andras; Csuzdi, Csaba; Culham, Alastair; D'Elia, Guillermo; d'Acoz, Cedric d'Udekem; Daneliya, Mikhail E; Dekker, Rene; Dickinson, Edward C; Dickinson, Timothy A; van Dijk, Peter Paul; Dijkstra, Klaas-Douwe B; Dima, Balint; Dmitriev, Dmitry A; Duistermaat, Leni; Dumbacher, John P; Eiserhardt, Wolf L; Ekrem, Torbjorn; Evenhuis, Neal L; Faille, Arnaud; Fernandez-Trianam, Jose L; Fiesler, Emile; Fishbein, Mark; Fordham, Barry G; Freitas, Andre V. L; Friol, Natalia R; Fritz, Uwe; Froslev, Tobias; Funk, Vicki A; Gaimari, Stephen D; Garbino, Guilherme S. T; Garraffoni, Andre R. S; Geml, Jozsef; Gill, Anthony C; Gray, Alan; Grazziotin, Felipe Gobbi; Greenslade, Penelope; Gutierrez, Eliecer E; Harvey, Mark S; Hazevoet, Cornelis J; He, Kai; He, Xiaolan; Helfer, Stephan; Helgen, Kristofer M; van Heteren, Anneke H; Garcia, Francisco Hita; Holstein, Norbert; Horvath, Margit K; Hovenkamp, Peter H; Hwang, Wei Song; Hyvonen, Jaakko; Islam, Melissa B; Iverson, John B; Ivie, Michael A; Jaafar, Zeehan; Jackson, Morgan D; Jayat, J. Pablo; Johnson, Norman F; Kaiser, Hinrich; Klitgard, Bente B; Knapp, Daniel G; Kojima, Jun-ichi; Koljalg, Urmas; Kontschan, Jeno; Krell, Frank-Thorsten; Krisai-Greilhuberm, Irmgard; Kullander, Sven; Latelle, Leonardo; Lattke, John E; Lencioni, Valeria; Lewis, Gwilym P; Lhano, Marcos G; Lujan, Nathan K; Luksenburg, Jolanda A; Mariaux, Jean; Marinho-Filho, Jader; Marshall, Christopher J; Mate, Jason F; McDonough, Molly M; Michel, Ellinor; Miranda, Vitor F. O; Mitroiulm, Mircea-Dan; Molinari, Jesus; Monks, Scott; Moore, Abigail J; Moratelli, Ricardo; Muranyi, David; Nakano, Takafumi; Nikolaeva, Svetlana; Noyes, John; Ohl, Michael; Oleas, Nora H; Orrell, Thomas; Pall-Gergele, Barna; Pape, Thomas; Papp, Viktor; Parenti, Lynne R; Patterson, David; Pavlinov, Igor Ya; Pine, Ronald H; Poczai, Peter; Prado, Jefferson; Prathapan, Divakaran; Rabeler, Richard K; Randall, John E; Rheindt, Frank E; Rhodin, Anders G. J; Rodriguez, Sara M; Rogers, D. Christopher; Roque, Fabio de O; Rowe, Kevin C; Ruedas, Luis A; Salazar-Bravo, Jorge; Salvador, Rodrigo B; Sangster, George; Sarmiento, Carlos E; Schigel, Dmitry S; Schmidt, Stefan; Schueler, Frederick W; Segers, Hendrik; Snow, Neil; Souza-Dias, Pedro G. B; Stals, Riaan; Stenroos, Soili; Stone, R. Douglas; Sturm, Charles F; Stys, Pavel; Teta, Pablo; Thomas, Daniel C; Timm, Robert M; Tindall, Brian J; Todd, Jonathan A; Triebel, Dagmar; Valdecasas, Antonio G; Vizzini, Alfredo; Vorontsova, Maria S; de Vos, Jurriaan M; Wagner, Philipp; Watling, Les; Weakley, Alan; Welter-Schultes, Francisco; Whitmore, Daniel; Wilding, Nicholas; Will, Kipling; Williams, Jason; Wilson, Karen; Winston, Judith E; Wuster, Wolfgang; Yanega, Douglas; Yeates, David K; Zaher, Hussam; Zhang, Guanyang; Zhang, Zhi-Qiang; Zhou, Hong-Zhang.
PLoS. Biol. ; 16(3): e2005075, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15045
8.
J Wildl Dis ; 52(3): 766-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27314481

RESUMO

We screened blood samples from 560 wild rodents collected in southeastern Brazil for antibodies to a recombinant nucleoprotein (rN) of Junín virus. Six rodents were antibody positive (1.1%), demonstrating evidence of infection with mammarenaviruses in several species of Brazilian rodents.


Assuntos
Infecções por Arenaviridae/veterinária , Arenaviridae/classificação , Roedores/virologia , Animais , Animais Selvagens , Infecções por Arenaviridae/epidemiologia , Infecções por Arenaviridae/virologia , Brasil/epidemiologia , Estudos Soroepidemiológicos
9.
Am J Trop Med Hyg ; 93(2): 404-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26078322

RESUMO

Hantaviruses are zoonotic viruses harbored by rodents, bats, and shrews. At present, only rodent-borne hantaviruses are associated with severe illness in humans. New species of hantaviruses have been recently identified in bats and shrews greatly expanding the potential reservoirs and ranges of these viruses. Brazil has one of the highest incidences of hantavirus cardiopulmonary syndrome in South America, hence it is critical to know what is the prevalence of hantaviruses in Brazil. Although much is known about rodent reservoirs, little is known regarding bats. We captured 270 bats from February 2012 to April 2014. Serum was screened for the presence of antibodies against a recombinant nucleoprotein (rN) of Araraquara virus (ARAQV). The prevalence of antibody to hantavirus was 9/53 with an overall seroprevalence of 17%. Previous studies have shown only insectivorous bats to harbor hantavirus; however, in our study, of the nine seropositive bats, five were frugivorous, one was carnivorous, and three were sanguivorous phyllostomid bats.


Assuntos
Quirópteros/virologia , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/veterinária , Orthohantavírus/isolamento & purificação , Animais , Anticorpos Antivirais/sangue , Brasil/epidemiologia , Nucleoproteínas/imunologia , Estudos Soroepidemiológicos , Musaranhos/virologia
10.
PLoS One ; 8(4): e61924, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349576

RESUMO

The Neotropics harbors a high diversity of species and several hypotheses have been proposed to account for this pattern. However, while species of forested domains are frequently studied, less is known of species from open vegetation formations occupying, altogether, a larger area than the Amazon Forest. Here we evaluate the role of historical barriers and the riverine hypothesis in the speciation patterns of small mammals by analyzing an ancient rodent lineage (Thrichomys, Hystricomorpha). Phylogenetic and biogeographic analyses were carried out with mitochondrial and nuclear DNA markers to analyze the evolutionary relationships between Thrichomys lineages occurring in dry domains along both banks of the Rio São Francisco. This river is one of the longest of South America whose course and water flow have been modified by inland tectonic activities and climate changes. Molecular data showed a higher number of lineages than previously described. The T. inermis species complex with 2n = 26, FN = 48 was observed in both banks of the river showing a paraphyletic arrangement, suggesting that river crossing had occurred, from east to west. A similar pattern was also observed for the T. apereoides complex. Thrichomys speciation occurred in Late Miocene when the river followed a different course. The current geographic distribution of Thrichomys species and their phylogenetic relationships suggested the existence of frequent past connections between both banks in the middle section of the Rio São Francisco. The extensive palaeodune region found in this area has been identified as a centre of endemism of several vertebrate species and is likely to be a center of Thrichomys diversification.


Assuntos
Biodiversidade , Especiação Genética , Fenômenos Geológicos , Filogeografia , Desenvolvimento Vegetal , Roedores/genética , Animais , Núcleo Celular/genética , Citocromos b/genética , DNA Mitocondrial/genética , Evolução Molecular , Fibrinogênio/genética , Íntrons/genética , Rios , Roedores/classificação
11.
Geospat Health ; 7(2): 289-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23733291

RESUMO

Along the southeastern coast of the United States of America (USA), the marsh rice rat (Oryzomys palustris) is the primary host for the hantavirus, genotype Bayou. According to the socio-ecological model for a territorial, polygamous species, females should be distributed across space and time by habitat resources and predation risks, whereas males should space themselves according to the degree of female aggregation and reproductive synchrony. To investigate how females affect the male-male transmission paradigm of Bayou virus, rodents were captured, marked, released in two macrohabitat types and followed across a 30-month period. Microhabitat cover variables were quantified around the individual trap stations. A geodatabase was created from habitat and rodent capture data and analysed in a geographical information system. The ratio of breeding to non-breeding females was ~1:1, with breeding females overly dispersed and non-breeding females randomly dispersed. Spatial analyses revealed both macro- and microhabitat preferences in females. Compared to seronegatives, higher proportions of seropositive adult males were found consistently within closer proximities to breeding females but not to non-breeding females, indicating that male locations were not driven simply by habitat selection. Activities to acquire dispersed receptive females could be an important driver of Bayou virus transmission among male hosts. Herein, we describe an interdisciplinary effort providing a novel approach to elucidate the complexity of hantavirus trafficking and maintenance in rodent populations of a coastal marsh ecosystem.


Assuntos
Reservatórios de Doenças/virologia , Infecções por Hantavirus/transmissão , Sigmodontinae/virologia , Análise Espacial , Animais , Ecossistema , Feminino , Masculino , Texas/epidemiologia , Fatores de Tempo
12.
Mem Inst Oswaldo Cruz ; 108(2): 167-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23579795

RESUMO

We tested sera from 286 agricultural workers and 322 rodents in the department of Córdoba, northeastern Colombia, for antibodies against two hantaviruses. The sera were analysed by indirect ELISA using the lysate of Vero E6 cells infected with Maciel virus (MACV) or the N protein of Araraquara virus (ARAV) as antigens for the detection of antibodies against hantaviruses. Twenty-four human sera were IgG positive using one or both antigens. We detected anti-MACV IgG antibodies in 10 sera (3.5%) and anti-ARAV antibodies in 21 sera (7.34%). Of the 10 samples that were positive for MACV, seven (70%) were cross-reactive with ARAV; seven of the 21 ARAV-positive samples were cross-reactive with MACV. Using an ARAV IgM ELISA, two of the 24 human sera (8.4%) were positive. We captured 322 rodents, including 210 Cricetidae (181 Zygodontomys brevicauda, 28 Oligoryzomys fulvescens and 1 Oecomys trinitatis), six Heteromys anomalus (Heteromyidae), one Proechimys sp. (Echimyidae) and 105 Muridae (34 Rattus rattus and 71 Mus musculus). All rodent sera were negative for both antigens. The 8.4% detection rate of hantavirus antibodies in humans is much higher than previously found in serosurveys in North America, suggesting that rural agricultural workers in northeastern Colombia are frequently exposed to hantaviruses. Our results also indicate that tests conducted with South American hantavirus antigens could have predictive value and could represent a useful alternative for the diagnosis of hantavirus infection in Colombia.


Assuntos
Doenças dos Trabalhadores Agrícolas/epidemiologia , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Infecções por Hantavirus/epidemiologia , Orthohantavírus/imunologia , Roedores/virologia , Adulto , Idoso , Doenças dos Trabalhadores Agrícolas/diagnóstico , Doenças dos Trabalhadores Agrícolas/virologia , Animais , Região do Caribe/epidemiologia , Colômbia/epidemiologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/diagnóstico , Infecções por Hantavirus/veterinária , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Roedores/classificação
13.
Mem. Inst. Oswaldo Cruz ; 108(2): 167-171, abr. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-670405

RESUMO

We tested sera from 286 agricultural workers and 322 rodents in the department of Córdoba, northeastern Colombia, for antibodies against two hantaviruses. The sera were analysed by indirect ELISA using the lysate of Vero E6 cells infected with Maciel virus (MACV) or the N protein of Araraquara virus (ARAV) as antigens for the detection of antibodies against hantaviruses. Twenty-four human sera were IgG positive using one or both antigens. We detected anti-MACV IgG antibodies in 10 sera (3.5%) and anti-ARAV antibodies in 21 sera (7.34%). Of the 10 samples that were positive for MACV, seven (70%) were cross-reactive with ARAV; seven of the 21 ARAV-positive samples were cross-reactive with MACV. Using an ARAV IgM ELISA, two of the 24 human sera (8.4%) were positive. We captured 322 rodents, including 210 Cricetidae (181 Zygodontomys brevicauda, 28 Oligoryzomys fulvescens and 1 Oecomys trinitatis), six Heteromys anomalus (Heteromyidae), one Proechimys sp. (Echimyidae) and 105 Muridae (34 Rattus rattus and 71 Mus musculus). All rodent sera were negative for both antigens. The 8.4% detection rate of hantavirus antibodies in humans is much higher than previously found in serosurveys in North America, suggesting that rural agricultural workers in northeastern Colombia are frequently exposed to hantaviruses. Our results also indicate that tests conducted with South American hantavirus antigens could have predictive value and could represent a useful alternative for the diagnosis of hantavirus infection in Colombia.


Assuntos
Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças dos Trabalhadores Agrícolas/epidemiologia , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Infecções por Hantavirus/epidemiologia , Orthohantavírus/imunologia , Roedores/virologia , Doenças dos Trabalhadores Agrícolas/diagnóstico , Doenças dos Trabalhadores Agrícolas/virologia , Região do Caribe/epidemiologia , Colômbia/epidemiologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Infecções por Hantavirus/diagnóstico , Infecções por Hantavirus/veterinária , Orthohantavírus/isolamento & purificação , Prevalência , Estudos Prospectivos , Roedores/classificação
14.
Mol Phylogenet Evol ; 66(3): 960-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23257216

RESUMO

With about 400 living species and 82 genera, rodents of the subfamily Sigmodontinae comprise one of the most diverse and more broadly distributed Neotropical mammalian clades. There has been much debate on the origin of the lineage or the lineages of sigmodontines that entered South America, the timing of entrance and different aspects of further diversification within South America. The ages of divergence of the main lineages and the crown age of the subfamily were estimated by using sequences of the interphotoreceptor retinoid binding protein and cytochrome b genes for a dense sigmodontine and muroid sampling. Bayesian inference using three fossil calibration points and a relaxed molecular clock estimated a middle Miocene origin for Sigmodontinae (∼12Ma), with most tribes diversifying throughout the Late Miocene (6.9-9.4Ma). These estimates together results of analyses of ancestral area reconstructions suggest a distribution for the most recent common ancestor of Sigmodontinae in Central-South America and a South American distribution for the most recent common ancestor of Oryzomyalia.


Assuntos
Distribuição Animal , Evolução Molecular , Especiação Genética , Sigmodontinae/genética , Animais , Sequência de Bases , Teorema de Bayes , América Central , Citocromos b/genética , Proteínas do Olho/genética , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Proteínas de Ligação ao Retinol/genética , Análise de Sequência de DNA , Sigmodontinae/fisiologia , América do Sul
16.
Am J Trop Med Hyg ; 81(1): 59-66, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19556568

RESUMO

Hantavirus cardiopulmonary syndrome (HCPS), which is caused by infection with Choclo virus, is uncommon in Panama, yet seropositivity among rural residents is as high as 60%. To clarify the environmental risk factors favoring rodent-to-human transmission, we tested serum from 3,067 rodents captured over a five-year period for antibodies against recombinant N protein of hantavirus by enzyme immunoassay and strip immunoblot. Among 220 seropositive rodents, Oligoryzomys fulvescens, the reservoir of Choclo virus, had the highest overall seroprevalence (23.5%); more abundant rodents (Zygodontomys brevicauda and Sigmodon hirsutus) had lower seroprevalences. In the mixed (combined modern and traditional) productive agroecosystem, the highest seroprevalence was among O. fulvescens captured in residences and in crops grown within 40 meters of a residence, with significantly lower seroprevalence in adjacent pasture and non-productive vegetation. Thus, crop habitats may serve as refugia for invasion into adjacent human residences and suggests several interventions to reduce human infection.


Assuntos
Ecossistema , Infecções por Hantavirus/veterinária , Doenças dos Roedores/epidemiologia , Roedores/virologia , Zoonoses/virologia , Animais , Anticorpos Antivirais/sangue , Produtos Agrícolas/virologia , Feminino , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/transmissão , Humanos , Masculino , Panamá , Ferimentos e Lesões/virologia
17.
PLoS Pathog ; 5(4): e1000358, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19343214

RESUMO

The ability of a New World (NW) clade B arenavirus to enter cells using human transferrin receptor 1 (TfR1) strictly correlates with its ability to cause hemorrhagic fever. Amapari (AMAV) and Tacaribe (TCRV), two nonpathogenic NW clade B arenaviruses that do not use human TfR1, are closely related to the NW arenaviruses that cause hemorrhagic fevers. Here we show that pseudotyped viruses bearing the surface glycoprotein (GP) of AMAV or TCRV can infect cells using the TfR1 orthologs of several mammalian species, including those of their respective natural hosts, the small rodent Neacomys spinosus and the fruit bat Artibeus jamaicensis. Mutation of one residue in human TfR1 makes it a functional receptor for TCRV, and mutation of four residues makes it a functional receptor for AMAV. Our data support an in vivo role for TfR1 in the replication of most, if not all, NW clade B arenaviruses, and suggest that with modest changes in their GPs the nonpathogenic arenaviruses could use human TfR1 and emerge as human pathogens.


Assuntos
Antígenos CD/metabolismo , Arenavirus do Novo Mundo/metabolismo , Receptores da Transferrina/metabolismo , Ligação Viral , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Arenavirus do Novo Mundo/patogenicidade , Arvicolinae , Células CHO , Gatos , Linhagem Celular , Quirópteros , Cricetinae , Cricetulus , Cães , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Ratos , Receptores da Transferrina/química , Receptores da Transferrina/genética , Alinhamento de Sequência , Especificidade da Espécie , Proteínas Virais/metabolismo
18.
Naturwissenschaften ; 96(1): 93-101, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18843477

RESUMO

Geographical variation in morphometric characters in heteromyid rodents has often correlated with climate gradients. Here, we used the long-term database of rodents trapped in the Sevilleta National Wildlife Refuge in New Mexico, USA to test whether significant annual changes in external morphometric characters are observed in a region with large variations in temperature and precipitation. We looked at the relationships between multiple temperature and precipitation variables and a number of morphological traits (body mass, body, tail, hind leg, and ear length) for two heteromyid rodents, Dipodomys merriami and Perognathus flavescens. Because these rodents can live multiple years in the wild, the climate variables for the year of the capture and the previous 2 years were included in the analyses. Using multiple linear regressions, we found that all of our morphometric traits, with the exception of tail length in D. merriami, had a significant relationship with one or more of the climate variables used. Our results demonstrate that effects of climate change on morphological traits occur over short periods, even in noninsular mammal populations. It is unclear, though, whether these changes are the result of morphological plasticity or natural selection.


Assuntos
Clima , Dipodomys/anatomia & histologia , Roedores/anatomia & histologia , Tempo (Meteorologia) , Animais , Tamanho Corporal , Ecossistema , Feminino , Masculino , New Mexico , Estações do Ano , Caracteres Sexuais , Especificidade da Espécie , Temperatura
19.
Proc Natl Acad Sci U S A ; 105(7): 2664-9, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18268337

RESUMO

Transferrin receptor 1 (TfR1) is a cellular receptor for the New World hemorrhagic fever arenaviruses Machupo (MACV), Junín (JUNV), and Guanarito (GTOV). Each of these viruses is specifically adapted to a distinct rodent host species, but all cause human disease. Here we compare the ability of these viruses to use various mammalian transferrin receptor 1 (TfR1) orthologs, including those of the South American rodents that serve as reservoirs for MACV, JUNV, and GTOV (Calomys callosus, Calomys musculinus, and Zygodontomys brevicauda, respectively). Retroviruses pseudotyped with MACV and JUNV but not GTOV glycoproteins (GPs) efficiently used C. callosus TfR1, whereas only JUNV GP could use C. musculinus TfR1. All three viruses efficiently used Z. brevicauda TfR1. TfR1 orthologs from related rodents, including house mouse (Mus musculus) and rat (Rattus norvegicus), did not support entry of these viruses. In contrast, these viruses efficiently used human and domestic cat TfR1 orthologs. We further show that a local region of the human TfR1 apical domain, including tyrosine 211, determined the efficiency with which MACV, JUNV, and GTOV used various TfR1 orthologs. Our data show that these New World arenaviruses are specifically adapted to the TfR1 orthologs of their respective rodent hosts and identify key commonalities between these orthologs and human TfR1 necessary for efficient transmission of these viruses to humans.


Assuntos
Infecções por Arenaviridae/transmissão , Arenavirus do Novo Mundo/fisiologia , Receptores da Transferrina/metabolismo , Sequência de Aminoácidos , Animais , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/metabolismo , Sítios de Ligação , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Receptores da Transferrina/química , Receptores da Transferrina/classificação , Receptores da Transferrina/genética , Alinhamento de Sequência , Homologia Estrutural de Proteína , Tirosina/genética , Tirosina/metabolismo , Internalização do Vírus
20.
Math Biosci Eng ; 5(4): 617-45, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19278272

RESUMO

Arenaviruses are associated with rodent-transmitted diseases in humans. Five arenaviruses are known to cause human illness: Lassa virus, Junin virus, Machupo virus, Guanarito virus and Sabia virus. In this investigation, we model the spread of Machupo virus in its rodent host Calomys callosus. Machupo virus infection in humans is known as Bolivian hemorrhagic fever (BHF) which has a mortality rate of approximately 5-30% [31]. Machupo virus is transmitted among rodents through horizontal (direct contact), vertical (infected mother to offspring) and sexual transmission. The immune response differs among rodents infected with Machupo virus. Either rodents develop immunity and recover (immunocompetent) or they do not develop immunity and remain infected (immunotolerant). We formulate a general deterministic model for male and female rodents consisting of eight differential equations, four for females and four for males. The four states represent susceptible, immunocompetent, immunotolerant and recovered rodents, denoted as S, I( t), I( c)and R, respectively. A unique disease-free equilibrium (DFE) is shown to exist and a basic reproduction number R( 0)is computed using the next generation matrix approach. The DFE is shown to be locally asymptotically stable if R(0) < 1and unstable if R( 0) > 1. Special cases of the general model are studied, where there is only one immune stage, either I(t) or I(c). In the first model, SI(c)R( c), it is assumed that all infected rodents are immunocompetent and recover. In the second model, SI(t), it is assumed that all infected rodents are immunotolerant. For each of these models, the basic reproduction numbers are computed and their relationship to the basic reproduction number of the general model determined. For the SI( t)model, it is shown that bistability may occur, the DFE and an enzootic equilibrium, with all rodents infectious, are locally asymptotically stable for the same set of parameter values. A simplification of the SI( t)model yields a third model, where the sexes are not differentiated, and therefore, there is no sexual transmission. For this third simplified model, the dynamics are completely analyzed. It is shown that there exists a DFE and possibly two additional equilibria, one of which is globally asymptotically stable for any given set of parameter values; bistability does not occur. Numerical examples illustrate the dynamics of the models. The biological implications of the results and future research goals are discussed in the conclusion.


Assuntos
Infecções por Arenaviridae/veterinária , Transmissão Vertical de Doenças Infecciosas/veterinária , Modelos Biológicos , Doenças dos Roedores/transmissão , Doenças Virais Sexualmente Transmissíveis/veterinária , Animais , Infecções por Arenaviridae/transmissão , Feminino , Masculino , Roedores , Doenças Virais Sexualmente Transmissíveis/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...