Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631421

RESUMO

In organic electronics, conjugated conductive polymers are most widely used. The scope of their application is currently very wide. Non-conjugated polymers are used much less in electronics and are usually used as insulation materials or materials for capacitors. However, the potential of non-conjugated polymers is much wider, due to the fact that new electronic materials with unique electronic properties can be created on the basis of non-conjugated polymers, as well as other inorganic dielectrics. This article demonstrates the possibilities of creating electrically conductive materials with unique electronic parameters based on non-conjugated polymers. The results of the study of the sensory properties of humidity are given as examples of the practical application of the structure. The abnormal electronic properties are realized along the interface of two polymer dielectrics with functional polar groups. The submicron films of polydiphenylenephthalide were used as a dielectric. It is shown that a quasi-two-dimensional electronic structure with abnormally large values of conductivity and mobility of charge carriers occurs along the interface. These structures are often called quasi-two-dimensional electron gas (Q2DEG). This article describes the manufacturing processes of multielectrode devices. Polymer films are deposited via the spin-coating method with polymer solutions in cyclohexanone. The metal electrodes were manufactured through thermal deposition in a vacuum. Three types of metal electrodes made of aluminum, copper and chromium were used. The influence of the electron work function of contacting metals on the electronic parameters of the structure was studied. It was established that the work function decrease leads to an increase in the conductivity and mobility of charge carriers. The charge carrier parameters were estimated based on the analysis of the current-voltage characteristics within the space-charge-limited current technique. The Richardson-Schottky thermionic emission model was used to evaluate values a potential barrier at metal/organic interfaces. It was established that the change in ambient humidity strongly affects the electronic transport properties along the polymer/polymer interface. It is demonstrated that the increase in conductivity with an increase in humidity occurs due to an increase in the mobility of charge carriers and a decrease in the height of the potential barrier at the three-dimensional metal contact with two-dimensional polymer interface. The potential barrier between the electrode and the bulk of the polymer film is significantly higher than between the electrode and the quasi-two-dimensional polymer structure.

2.
Polymers (Basel) ; 15(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850212

RESUMO

The mechanism of charge carrier transport in the indium tin oxide (ITO)/polymer/Cu structure is studied, where thin films of copoly(arylene ether ketone) with cardo fluorene moieties are used. This copoly(arylene ether ketone) is non-conjugated polymer which has the properties of electronic switching from the insulating to the highly conductive state. The dependence on the polymer film thickness of such parameters as the potential barrier at the ITO/polymer interface, the concentration of charge carriers, and their mobility in the polymer is studied for the first time. The study of this system is of interest due to the proven potential of using the synthesized polymer in the contact system of a silicon solar cell with an ITO top layer. The parameters of charge carriers and ITO/polymer barrier are evaluated based on the analysis of current-voltage characteristics of ITO/polymer/Cu structure within the injection current models and the Schottky model. The thickness of the polymer layer varies from 50 nm to 2.1 µm. The concentration of intrinsic charge carriers increases when decreasing the polymer film thickness. The charge carrier mobility depends irregularly on the thickness, showing a maximum of 9.3 × 10-4 cm2/V s at 210 nm and a minimum of 4.7 × 10-11 cm2/V s at 50 nm. The conductivity of polymer films first increases with a decrease in thickness from 2.1 µm to 210 nm, but then begins to decrease upon transition to the globular structure of the films at smaller thicknesses. The dependence of the barrier height on polymer thickness has a minimum of 0.28 eV for films 100-210 nm thick. The influence of the supramolecular structure and surface charge field of thin polymer films on the transport of charge carriers is discussed.

3.
Membranes (Basel) ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34564494

RESUMO

Three poly(arylene ether ketone)s (PAEKs) with propylidene (C1, C2) and phtalide (C3) fragments, and one phtalide-containing polyarylene (C4), were synthesized. Their chemical structures were confirmed via 1H NMR, 13C NMR and 19F NMR spectroscopy. The polymers have shown a high glass transition temperature (>155 °C), excellent film-forming properties, and a high free volume for this polymer type. The influence of various functional groups in the structure of PAEKs was evaluated. Expectedly, due to higher free volume the introduction of hexafluoropropylidene group to PAEK resulted in higher increase of gas permeability in comparison with propylidene group. The substitution of the fluorine-containing group on a rigid phtalide moiety (C3) significantly increases glass transition temperature of the polymer while gas permeation slightly decreases. Finally, the removal of two ether groups from PAEK structure (C4) leads to a rigid polymer chain that is characterized by highest free volume, gas permeability and diffusion coefficients among the PAEKs under investigation. Methods of modified atomic (MAC) and bond (BC) contributions were applied to estimate gas permeation and diffusion. Both techniques showed reasonable predicted parameters for three polymers while a significant underestimation of gas transport parameters was observed for C4. Gas solubility coefficients for PAEKs were forecasted by "Short polymer chain surface based pre-diction" (SPCSBP) method. Results for all three prediction methods were compared with the ex-perimental data obtained in this work. Predicted parameters were in good agreement with ex-perimental data for phtalide-containing polymers (C3 and C4) while for propylidene-containing poly(arylene ether ketone)s they were overestimated due to a possible influence of propylidene fragment on indices of oligomeric chains. MAC and BC methods demonstrated better prediction power than SPCSBP method.

4.
Magn Reson Chem ; 59(1): 61-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702159

RESUMO

All 13 C NMR signals of the poly(arylene) polymers, O-1, S-7, OS-4, OOS-3, OOOS-2, SSO-5, and SSSO-6 (where O is a diphenyleneoxiphthalide unit and S is a diphenylenethiophthalide unit) in dyads and triads were assigned unequivocally with two-dimensional NMR techniques (ge-2D [1 H-1 H] COSY, ge-2D [1 H-13 C] HSQC, and ge-2D [1 H-13 C] HMBC), and for each atom, the increments of the shifts are determined. For structurally similar carbon atoms of the phthalide cycle and heteroaromatic fragments of the skeletal chain, additive signal splitting schemes in phthalide centered dyads and in diphenylene oxide and in diphenylene sulfide centered triads are considered, based on taking into account the contributions to their shielding of adjacent and distant substituents. It was shown that the nature of the splitting of the signals of each of the 20 carbon atoms in 3,3-bisphenylphthalide fragments is determined by the type of carbon atom (tertiary or quaternary, even or odd), the type of heteroatoms in adjacent heteroaromatic fragments, their distance from the identified carbon nucleus, and their polyad symmetry. The results obtained in this article will greatly facilitate our further studies and, in particular, will allow us to study the microstructure of statistical copolymers based on the asymmetric OS monomer at the dyad and triad levels.

5.
Magn Reson Chem ; 55(10): 958-966, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28523901

RESUMO

All 1 H and 13 C NMR signals of the four poly(phenylenephthalides): polydiphenylenephthalide (P(DPh)-1), polyterphenylenephthalide (P(TPh)-2) and two sequentially ordered polymers with different ratios of alternating diphenylenephthalide and terphenylenephthalide units (P(DTPh)-3, P(DDTPh)-4) were assigned unequivocally with two-dimensional NMR techniques (1 H-1 H COSY and NOESY; 1 H-13 C HSQC and HMBC). There are four types of polyphenylene fragments: not symmetrical end, symmetrical inner, symmetrical pre-end and formally symmetric pre-end. The equivalent carbon atoms in these fragments have different chemical shifts. A full additivity of the chemical shifts for the side phthalide and polyphenylene carbon atoms was revealed. A new structure of diads with a mirror symmetry plane, passing through the middle of aromatic moieties, is proposed. Copyright © 2017 John Wiley & Sons, Ltd.

6.
Magn Reson Chem ; 51(10): 621-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23921970

RESUMO

(1) H and (13) С NMR spectral assignments have been provided for low-molecular reference monomers, poly(diphenyleneoxidephthalide) and periodic copoly(arylenephthalide) derivatives such as AB, ABB, and ABBB (where A = terphenylenephthalide and B = diphenyleneoxidephthalide) using (1) H-(1) H COSY, (1) H-(13) C HSQC and HMBC NMR techniques. Distinctive (13) C NMR chemical shifts of a main chain have been observed containing fragments of similar structures and lateral phthalate groups being part of various diads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...