Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37214878

RESUMO

Prostate cancer is the second leading cause of malignancy-related deaths among American men. Active surveillance is a safe option for many men with less aggressive disease, yet definitively determining low-risk cancer is challenging with biopsy alone. Herein, we sought to identify prostate-derived microRNAs in patient sera and serum extracellular vesicles, and determine if those microRNAs improve upon the current clinical risk calculators for prostate cancer prognosis before and after biopsy. Prostate-derived intracellular and extracellular vesicle-contained microRNAs were identified by small RNA sequencing of prostate cancer patient explants and primary cells. Abundant microRNAs were included in a custom microRNA PCR panel that was queried in whole serum and serum extracellular vesicles from a diverse cohort of men diagnosed with prostate cancer. The levels of these circulating microRNAs significantly differed between indolent and aggressive disease and improved the area under the curve for pretreatment nomograms of prostate cancer disease risk. The microRNAs within the extracellular vesicles had improved prognostic value compared to the microRNAs in the whole serum. In summary, quantifying microRNAs circulating in extracellular vesicles is a clinically feasible assay that may provide additional information for assessing prostate cancer risk stratification.

2.
J Extracell Biol ; 2(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38496750

RESUMO

Prostate cancer is the second leading cause of malignancy-related deaths among American men. Active surveillance is a safe option for many men with less aggressive disease, yet definitively determining low-risk cancer is challenging with biopsy alone. Herein, we sought to identify prostate-derived microRNAs in patient sera and serum extracellular vesicles, and determine if those microRNAs improve upon the current clinical risk calculators for prostate cancer prognosis before and after biopsy. Prostate-derived intracellular and extracellular vesicle-contained microRNAs were identified by small RNA sequencing of prostate cancer patient explants and primary cells. Abundant microRNAs were included in a custom microRNA PCR panel that was queried in whole serum and serum extracellular vesicles from a diverse cohort of men diagnosed with prostate cancer. The levels of these circulating microRNAs significantly differed between indolent and aggressive disease and improved the area under the curve for pretreatment nomograms of prostate cancer disease risk. The microRNAs within the extracellular vesicles were the most informative and improved the AUC to 0.739 compared to the existing nomogram alone, which has an AUC of 0.561. The microRNAs in the whole serum improved it to AUC 0.675. In summary, quantifying microRNAs circulating in extracellular vesicles is a clinically feasible assay that may provide additional information for assessing prostate cancer risk stratification.

3.
J Cell Commun Signal ; 16(3): 397-419, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34841476

RESUMO

CD47 is a marker of self and a signaling receptor for thrombospondin-1 that is also a component of extracellular vesicles (EVs) released by various cell types. Previous studies identified CD47-dependent functional effects of T cell EVs on target cells, mediated by delivery of their RNA contents, and enrichment of specific subsets of coding and noncoding RNAs in CD47+ EVs. Mass spectrometry was employed here to identify potential mechanisms by which CD47 regulates the trafficking of specific RNAs to EVs. Specific interactions of CD47 and its cytoplasmic adapter ubiquilin-1 with components of the exportin-1/Ran nuclear export complex were identified and confirmed by coimmunoprecipitation. Exportin-1 is known to regulate nuclear to cytoplasmic trafficking of 5'-7-methylguanosine (m7G)-modified microRNAs and mRNAs that interact with its cargo protein EIF4E. Interaction with CD47 was inhibited following alkylation of exportin-1 at Cys528 by its covalent inhibitor leptomycin B. Leptomycin B increased levels of m7G-modified RNAs, and their association with exportin-1 in EVs released from wild type but not CD47-deficient cells. In addition to perturbing nuclear to cytoplasmic transport, transcriptomic analyses of EVs released by wild type and CD47-deficient Jurkat T cells revealed a global CD47-dependent enrichment of m7G-modified microRNAs and mRNAs in EVs released by CD47-deficient cells. Correspondingly, decreasing CD47 expression in wild type cells or treatment with thrombospondin-1 enhanced levels of specific m7G-modified RNAs released in EVs, and re-expressing CD47 in CD47-deficient T cells decreased their levels. Therefore, CD47 signaling limits the trafficking of m7G-modified RNAs to EVs through physical interactions with the exportin-1/Ran transport complex.

4.
Cancer Metab ; 8: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101674

RESUMO

BACKGROUND: Targeting glutamine metabolism in cancer has become an increasingly vibrant area of research. Mutant IDH1 (IDH1 mut ) gliomas are considered good candidates for targeting this pathway because of the contribution of glutamine to their newly acquired function: synthesis of 2-hydroxyglutarate (2HG). METHODS: We have employed a combination of 13C tracers including glutamine and glucose for investigating the metabolism of patient-derived IDH1 mut glioma cell lines through NMR and LC/MS. Additionally, genetic loss-of-function (in vitro and in vivo) approaches were performed to unravel the adaptability of these cell lines to the inhibition of glutaminase activity. RESULTS: We report the adaptability of IDH1 mut cells' metabolism to the inhibition of glutamine/glutamate pathway. The glutaminase inhibitor CB839 generated a decrease in the production of the downstream metabolites of glutamate, including those involved in the TCA cycle and 2HG. However, this effect on metabolism was not extended to viability; rather, our patient-derived IDH1 mut cell lines display a metabolic plasticity that allows them to overcome glutaminase inhibition. CONCLUSIONS: Major metabolic adaptations involved pathways that can generate glutamate by using alternative substrates from glutamine, such as alanine or aspartate. Indeed, asparagine synthetase was upregulated both in vivo and in vitro revealing a new potential therapeutic target for a combinatory approach with CB839 against IDH1 mut gliomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...