Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Mol Biol Educ ; 49(3): 372-382, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33326682

RESUMO

The core concept of genetic information flow was identified in recent calls to improve undergraduate biology education. Previous work shows that students have difficulty differentiating between the three processes of the Central Dogma (CD; replication, transcription, and translation). We built upon this work by developing and applying an analytic coding rubric to 1050 student written responses to a three-question item about the CD. Each response was previously coded only for correctness using a holistic rubric. Our rubric captures subtleties of student conceptual understanding of each process that previous work has not yet captured at a large scale. Regardless of holistic correctness scores, student responses included five or six distinct ideas. By analyzing common co-occurring rubric categories in student responses, we found a common pair representing two normative ideas about the molecules produced by each CD process. By applying analytic coding to student responses preinstruction and postinstruction, we found student thinking about the processes involved was most prone to change. The combined strengths of analytic and holistic rubrics allow us to reveal mixed ideas about the CD processes and provide a detailed picture of which conceptual ideas students draw upon when explaining each CD process.


Assuntos
Biologia/educação , Currículo , DNA/genética , Biologia Molecular/educação , RNA/genética , Transcrição Gênica , Humanos , Estudantes , Pensamento
2.
APL Bioeng ; 1(1): 016102, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31069282

RESUMO

Today, the area of point-of-care diagnostics is synonymous with paper microfluidics where cheap, disposable, and on-the-spot detection toolkits are being developed for a variety of chemical tests. In this work, we present a novel application of microfluidic paper-based analytical devices (µPADs) to study the behavior of a small model nematode, Caenorhabditis elegans. We describe schemes of µPAD fabrication on paper and plastic substrates where membranes are created in agarose and Pluronic gel. Methods are demonstrated for loading, visualizing, and transferring single and multiple nematodes. Using an anthelmintic drug, levamisole, we show that chemical testing on C. elegans is easily performed because of the open device structure. A custom program is written to automatically recognize individual worms on the µPADs and extract locomotion parameters in real-time. The combination of µPADs and the nematode tracking program provides a relatively low-cost, simple-to-fabricate imaging and screening assay (compared to standard agarose plates or polymeric microfluidic devices) for non-microfluidic, nematode laboratories.

3.
Life Sci Space Res (Amst) ; 10: 38-46, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27662786

RESUMO

As we seek to recognize the opportunities of advanced aerospace technologies and spaceflight, it is increasingly important to understand the impacts of hypergravity, defined as gravitational forces greater than those present on the earth's surface. The nematode Caenorhabditis elegans has been established as a powerful model to study the effects of altered gravity regimens and has displayed remarkable resilience to space travel. In this study, we investigate the effects of short-term and defined hypergravity exposure on C. elegans motility, brood size, pharyngeal pumping rates, and lifespan. The results from this study advance our understanding of the effects of shorter durations of exposure to increased gravitational forces on C. elegans, and also contribute to the growing body of literature on the impacts of altered gravity regimens on earth's life forms.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Hipergravidade , Animais , Locomoção , Reprodução
4.
Toxicol Sci ; 135(1): 156-68, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23805000

RESUMO

Environmental toxicants influence development, behavior, and ultimately survival. The nematode Caenorhabditis elegans has proven to be an exceptionally powerful model for toxicological studies. Here, we develop novel technologies to describe the effects of cyanide toxicity with high spatiotemporal resolution. Importantly, we use these methods to examine the genetic underpinnings of cyanide resistance. Caenorhabditis elegans that lack the EGL-9 oxygen sensing enzyme have been shown to be resistant to hydrogen cyanide (HCN) gas produced by the pathogen Pseudomonas aeruginosa PAO1. We demonstrate that the cyanide resistance exhibited by egl-9 mutants is completely dependent on the HIF-1 hypoxia-inducible factor and is mediated by the cysl-2 cysteine synthase, which likely functions in metabolic pathways that inactivate cyanide. Further, the expression of cysl-2 correlates with the degree of cyanide resistance exhibited in each genetic background. We find that each mutant exhibits similar relative resistance to HCN gas on plates or to aqueous potassium cyanide in microfluidic chambers. The design of the microfluidic devices, in combination with real-time imaging, addresses a series of challenges presented by mutant phenotypes and by the chemical nature of the toxicant. The microfluidic assay produces a set of behavioral parameters with increased resolution that describe cyanide toxicity and resistance in C. elegans, and this is particularly useful in analyzing subtle phenotypes. These multiparameter analyses of C. elegans behavior hold great potential as a means to monitor the effects of toxicants or chemical interventions in real time and to study the biological networks that underpin toxicant resistance.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Cianeto de Hidrogênio/toxicidade , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Cisteína Sintase/fisiologia , Resistência a Medicamentos , Fator 1 Induzível por Hipóxia/fisiologia , Técnicas Analíticas Microfluídicas , Mutação
5.
PLoS Pathog ; 6(8): e1001075, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20865124

RESUMO

Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Infecções por Pseudomonas/imunologia , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Immunoblotting , Imunoprecipitação , Mutação , Pseudomonas aeruginosa/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...