Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Dev Cell ; 58(17): 1519-1533.e6, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37419117

RESUMO

Planar spindle orientation is critical for epithelial tissue organization and is generally instructed by the long cell-shape axis or cortical polarity domains. We introduced mouse intestinal organoids in order to study spindle orientation in a monolayered mammalian epithelium. Although spindles were planar, mitotic cells remained elongated along the apico-basal (A-B) axis, and polarity complexes were segregated to basal poles, so that spindles oriented in an unconventional manner, orthogonal to both polarity and geometric cues. Using high-resolution 3D imaging, simulations, and cell-shape and cytoskeleton manipulations, we show that planar divisions resulted from a length limitation in astral microtubules (MTs) which precludes them from interacting with basal polarity, and orient spindles from the local geometry of apical domains. Accordingly, lengthening MTs affected spindle planarity, cell positioning, and crypt arrangement. We conclude that MT length regulation may serve as a key mechanism for spindles to sense local cell shapes and tissue forces to preserve mammalian epithelial architecture.


Assuntos
Microtúbulos , Fuso Acromático , Animais , Camundongos , Fuso Acromático/fisiologia , Divisão Celular , Microtúbulos/fisiologia , Epitélio , Polaridade Celular/fisiologia , Mamíferos
3.
Biomaterials ; 282: 121380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101742

RESUMO

The field of intestinal biology is thirstily searching for different culture methods that complement the limitations of organoids, particularly the lack of a differentiated intestinal compartment. While being recognized as an important milestone for basic and translational biological studies, many primary cultures of intestinal epithelium (IE) rely on empirical trials using hydrogels of various stiffness, whose mechanical impact on epithelial organization remains vague until now. Here, we report the development of hydrogel scaffolds with a range of elasticities and their influence on IE expansion, organization, and differentiation. On stiff substrates (>5 kPa), mouse IE cells adopt a flat cell shape and detach in the short-term. In contrast, on soft substrates (80-500 Pa), they sustain for a long-term, pack into high density, develop columnar shape with improved apical-basal polarity and differentiation marker expression, a phenotype reminiscent of features in vivo mouse IE. We then developed a soft gel molding process to produce 3D Matrigel scaffolds of close-to-nature stiffness, which support and maintain a culture of mouse IE into crypt-villus architecture. Thus, the present work is up-to-date informative for the design of biomaterials for ex vivo intestinal models, offering self-renewal in vitro culture that emulates the mouse IE.


Assuntos
Biomimética , Intestinos , Animais , Diferenciação Celular , Hidrogéis/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Organoides
4.
Biol Cell ; 113(12): 475-491, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34580889

RESUMO

Organoids have been widely used in fundamental, biomimetic, and therapeutic studies. These multicellular systems form via cell-autonomous self-organization where a cohort of stem cells undergoes in vivo-like proliferation, differentiation, and morphogenesis. They also recapitulate a series of physiological cell organization, complexity and functions that are untouchable by conventional bio-model systems using immortal cell lines. However, the development of organoids is often not easily controlled and their shape and size are yet fully physiological. Recent research has demonstrated that multiple bioengineering tools could be harnessed to control important internal and external cues that dictate stem cell behavior and stem-cell based organoid development. In this review, we introduce the current development of organoid systems and their potentials, as well as their limitations that impede their further utility in research and clinical fields. In comparison to conventional autonomous organoid system, we then review bioengineering approaches that offer improved control over organoid growth and development. We focus on the genetic editing tools that allow the program of build-in responses and phenotypes for organoid systems with enhanced physiological relevance. We also highlight the advances in bioengineering methods to modify cellular external milieus to generate desirable cell composition, 3D micro-architectures, and complex microfluidic systems. We conclude that the emerging biomimetic methods that employ multidisciplinary approaches could prevail in the future development of organoid systems.


Assuntos
Bioengenharia , Organoides , Diferenciação Celular , Humanos , Células-Tronco
5.
Artigo em Inglês | MEDLINE | ID: mdl-32850690

RESUMO

The gastrointestinal (GI) tract is a complex system responsible for nutrient absorption, digestion, secretion, and elimination of waste products that also hosts immune surveillance, the intestinal microbiome, and interfaces with the nervous system. Traditional in vitro systems cannot harness the architectural and functional complexity of the GI tract. Recent advances in organoid engineering, microfluidic organs-on-a-chip technology, and microfabrication allows us to create better in vitro models of human organs/tissues. These micro-physiological systems could integrate the numerous cell types involved in GI development and physiology, including intestinal epithelium, endothelium (vascular), nerve cells, immune cells, and their interplay/cooperativity with the microbiome. In this review, we report recent progress in developing micro-physiological models of the GI systems. We also discuss how these models could be used to study normal intestinal physiology such as nutrient absorption, digestion, and secretion as well as GI infection, inflammation, cancer, and metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...