Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(4): e60402, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23599835

RESUMO

This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks.


Assuntos
Modelos Teóricos , Astronave , Algoritmos , Engenharia , Telemetria , Tecnologia sem Fio
2.
Risk Anal ; 33(3): 420-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22967134

RESUMO

Although a "system approach" to accidents in sociotechnical systems has been frequently advocated, formal system theoretic concepts remain absent in the literature on accident analysis and system safety. To address this gap, we introduce the notions of coordinability and consistency from the hierarchical and multilevel systems theory literature. We then investigate the applicability and the importance of these concepts to accident causation and safety. Using illustrative examples, including the worst disaster in aviation history, and recent incidents in the United States of aircraft clipping each other on the tarmac, we propose that the lack of coordinability is a fundamental failure mechanism causing or contributing to accidents in multilevel systems. We make a similar case for the lack of consistency. Coordinability and consistency become ingredients for accident prevention, and their absence fundamental failure mechanisms that can lead to system accidents. Finally, using the concepts introduced in this work, we identify several venues for further research, including the development of a theory of coordination in multilevel systems, the investigation of potential synergies between coordinability, consistency, and the high reliability organizations paradigm, and the possibility of reframing the view that "sloppy management is the root cause of many industrial accidents" as one of lack of coordinability and/or consistency between management and operations. By introducing and expanding on the concepts of coordinability and consistency, we hope to contribute to the thinking about, and the to language of, accident causation, and prevention and to add to the intellectual toolkit of safety professionals and academics.

3.
Acta Astronaut ; 53(12): 927-44, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14658454

RESUMO

The purpose of this paper is to review the concept of flexibility as discussed in various fields of investigations, to extract its characteristic features, and to explore its implications in the case of aerospace system design. In order to discuss any subject matter clearly, it is necessary to begin with a clear set of definitions. Indeed much can be gained through careful and consistent definitions of terms alone. Flexibility however is a word rich with ambiguity. While it is being increasingly used in various fields, few attempts have been made to formally define, quantify, and propose ways for achieving flexibility. This paper proposes to fill in part of this gap by synthesizing a clear and consistent definition of flexibility. It will do so by reviewing the usage of the term in various fields of inquiries, and show that it is indeed possible to clearly and unambiguously characterize flexibility, and to disentangle it from closely related concepts.


Assuntos
Aeronaves/instrumentação , Aviação/tendências , Voo Espacial/tendências , Astronave/instrumentação , Teoria de Sistemas , Aviação/instrumentação , Desenho de Equipamento , Previsões , Desenvolvimento de Programas , Design de Software , Voo Espacial/instrumentação , Estados Unidos , United States National Aeronautics and Space Administration/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...