Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559657

RESUMO

Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard (Beta vulgaris var. cicla), arugula (Eruca vesicaria ssp. sativa), and pak choi (Brassica rapa var. chinensis). The growing media were T1.1 (30% vermicast + 30% sawdust + 10% perlite + 30% PittMoss (PM)); T2.1 (30% vermicast + 20% sawdust + 20% perlite + 30% PM); PM was replaced with mushroom compost in the respective media to form T1.2 and T2.2. Positive control (PC) was Pro-mix BX™ potting medium alone. Root length was the highest in T1.1 while the shoot length, root volume, and yield were highest in T2.2. Chlorophyll and carotenoid contents of Swiss chard grown in T1.1 was the highest, followed by T2.2 and T1.1. Pak choi and kale had the highest sugar and protein contents in T2.2, respectively. Consistently, total phenolics and flavonoids of the microgreens were increased by 1.5-fold in T1.1 and T2.2 compared to PC. Antioxidant enzyme activities were increased in all the four microgreens grown in T1.1 and T2.2. Overall, T2.2 was the most effective growing media to increase microgreens plant growth, yield, and biochemical composition.

2.
PLoS One ; 16(7): e0254188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237112

RESUMO

A combination of vermicast and sawdust mixed medium is commonly used in horticulture, but the added benefit of microbial inoculation and mechanism of nutrient availability are unknown. This study was done to determine nutrient mineralization and nutrient release patterns of different combinations or a mix of vermicast-sawdust growing media amended with or without Trichoderma viride (105 spores/g). The mixed-media treatments were (1) 80% vermicast+20% sawdust; (2) 60% vermicast+40% sawdust; (3) 40% vermicast+60% sawdust; (4) 20% vermicast+80% sawdust; and (5) sawdust alone (control). Total dissolved solids, electric conductivity and salinity increased with each sampling time following submergence in deionized. Nutrients released from media without T. viride were significantly higher than the corresponding media with added T. viride. Overall, the starting total nitrogen of the different media did not change during the incubation period, but nitrate-nitrogen was reduced to a negligible amount by the end of day 30 of incubation. A repeated measures analysis showed a significant effect of Time*T. viride*Treatment on total dissolved solids. Redundancy analysis demonstrated a positive and strong association between media composed of ≥40% vermicast and ≤60% sawdust with or without T. viride and mineral nutrients released, electrical conductivity, total dissolved solids and salinity. These findings suggest that fast-growing plants may benefit from 40% to 60% vermicast added to 40% to 60% sawdust without T. viride while slow-growing plants can benefit from the same mixed medium combined with the addition of T. viride. Further investigation is underway to assess microbial dynamics in the mixed media and their influence on plant growth.


Assuntos
Nutrientes , Trichoderma , Meios de Cultura , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...