Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 96: 29-34, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27765624

RESUMO

Cold exposure appears to activate aspects of the insect immune system; however, the functional significance of the relationship between cold and immunity is unclear. Insect success at low temperatures is shaped in part by interactions with biotic stressors, such as pathogens, thus it is important to understand how and why immunity might be activated by cold. Here we explore which components of the immune system are activated, and whether those components differ among different kinds of cold exposure. We exposed Drosophila melanogaster to both acute (2h, -2°C) and sustained (10h, -0.5°C) cold, and measured potential (antimicrobial peptide expression, phenoloxidase activity, haemocyte counts) and realised (survival of fungal infection, wound-induced melanisation, bacterial clearance) immunity following recovery. Acute cold increased circulating haemocyte concentration and the expression of Turandot-A and diptericin, but elicited a short-term decrease in the clearance of gram-positive bacteria. Sustained cold increased the expression of Turandot-A, with no effect on other measures of potential or realised immunity. We show that measures of potential immunity were up-regulated by cold, whereas realised immunity was either unaffected or down-regulated. Thus, we hypothesize that cold-activation of potential immunity in Drosophila may be a compensatory mechanism to maintain stable immune function during or after low temperature exposure.


Assuntos
Temperatura Baixa , Drosophila melanogaster/fisiologia , Sistema Imunitário , Animais , Drosophila melanogaster/imunologia , Feminino
2.
Integr Comp Biol ; 53(4): 545-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23520401

RESUMO

Multiple stressors, both abiotic and biotic, often are experienced simultaneously by organisms in nature. Responses to these stressors may share signaling pathways ("cross-talk") or protective mechanisms ("cross-tolerance"). Temperate and polar insects that must survive the winter experience low temperatures accompanied by additional abiotic stressors, such as low availability of water. Cold and desiccation have many similar effects at a cellular level, and we present evidence that the cellular mechanisms that protect against cold stress also protect against desiccation, and that the responses to cold and dehydration likely evolved as cross-tolerance. By contrast, there are several lines of evidence suggesting that low temperature stress elicits an upregulation of immune responses in insects (and vice versa). Because there is little mechanistic overlap between cold stress and immune stress at the cellular level, we suggest that this is cross-talk. Both cross-talk and cross-tolerance may be adaptive and likely evolved in response to synchronous stressors; however, we suggest that cross-talk and cross-tolerance may lead to different responses to changes in the timing and severity of multiple stress interactions in a changing world. We present a framework describing the potentially different responses of cross-tolerance and cross-talk to a changing environment and describe the nature of these impacts using interaction of cold-desiccation and cold-immunity in overwintering insects as an example.


Assuntos
Adaptação Biológica/fisiologia , Temperatura Baixa , Insetos/imunologia , Insetos/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Perda Insensível de Água , Animais , Receptor Cross-Talk/fisiologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...