Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(22): 6306-6309, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186976

RESUMO

Various beam shaping approaches were examined to counter the negative influence of surface aberration arising when inscribing optical waveguides deeply inside of glass with a femtosecond laser. Aberration correction was found unable to completely recover the low-loss waveguide properties, prompting a comprehensive examination of waveguides formed with focused Gaussian-Bessel beams. Diverging conical phase fronts are presented as a hybrid means of partial aberration correction to improve insertion loss and a new, to the best of our knowledge, means of asymmetric beam shaping. In this way, low-loss waveguides are presented over shallow to deep writing depth (2.8 mm) where morphological and modal properties could be further tuned with conical phase front.

2.
Sci Robot ; 4(29)2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33137716

RESUMO

Flexible magnetic small-scale robots use patterned magnetization to achieve fast transformation into complex three-dimensional (3D) shapes and thereby achieve locomotion capabilities and functions. These capabilities address current challenges for microrobots in drug delivery, object manipulation, and minimally invasive procedures. However, possible microrobot designs are limited by the existing methods for patterning magnetic particles in flexible materials. Here, we report a method for patterning hard magnetic microparticles in an elastomer matrix. This method, based on ultraviolet (UV) lithography, uses controlled reorientation of magnetic particles and selective exposure to UV light to encode magnetic particles in planar materials with arbitrary 3D orientation with a geometrical feature size as small as 100 micrometers. Multiple planar microrobots with various sizes, different geometries, and arbitrary magnetization profiles can be fabricated from a single precursor in one process. Moreover, a 3D magnetization profile allows higher-order and multi-axis bending, large-angle bending, and combined bending and torsion in one sheet of polymer, creating previously unachievable shape changes and microrobotic locomotion mechanisms such as multi-arm power grasping and multi-legged paddle crawling. A physics-based model is also presented as a design tool to predict the shape changes under magnetic actuation.

3.
Soft Matter ; 13(40): 7255-7263, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28960218

RESUMO

The generation of microparticles with non-spherical morphologies has generated extensive interest because of their enhanced physical properties that can increase their performance in a wide variety of clinical and industrial applications. A flow lithographic technique based on stop flow lithography (SFL) recently showed the ability to fabricate particles with 3D shapes via manipulation of the UV intensity profile in a simple 2D microfluidic channel. Here, we further explore this flow lithographic method, called non-uniform flow lithography (NUFL), to investigate the 3D-shape tuning ability for the generation of 3D magnetic microparticles and their potential applications. We characterize the morphological microparticle shape change through variation of polymerization objective, UV intensity, and solution opacity. We also couple the particles' intrinsic anisotropic magnetic properties with an external magnetic field to create chains of bullet- and bell-shaped particles and a valve-like micromachine. In addition, in contrast to other complex and multi-step methodologies, NUFL shows a simple route for the facile creation of 3D microstructure platforms such as microneedles with fully modifiable tip morphology. This method presents intriguing possibilities for growing research within 3D microstructure assembly, micromachine systems and minimally invasive medical interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...