Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 81(5): 1052-1062, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32541121

RESUMO

Anaerobic digestion is one of the common methods of managing and stabilizing sludge. However, due to the limitations of the biological sludge hydrolysis stage, anaerobic decomposition is slow and requires a long time. This study evaluated the effects of thermal (80 °C) (TH-PRE) and a combination of thermal with the lysozyme enzyme (LTH-PRE) pretreatments on the enhancement of anaerobic activated sludge digestion. Response surface methodology was implemented to optimize enzyme pretreatment conditions (enzyme and mixed liquid suspended solids concentration). The results showed that both pretreatment methods increase soluble chemical oxygen demand (COD) and reduces total and volatile suspended solids (VSS), and phosphate concentration. The COD removal rate in LTH-PRE and TH-PRE was 95% and 81%, respectively. The value of VSS reduction in LTH-PRE and TH-PRE was 41% and 31%, more than the control operation, respectively. The biogas production in LTH-PRE and in TH-PRE also increased by 124% and 96%, respectively.


Assuntos
Muramidase , Esgotos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Hidrólise , Metano
2.
Chemosphere ; 248: 125917, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32004892

RESUMO

Quorum sensing signals regulate various functions within activated sludge processes such as formation of microbial aggregates. Disturbance of this signaling system, known as quorum quenching (QQ), provides opportunities for eliminating some problems related to biological wastewater treatment (e.g., biofouling and excess sludge production). However, it is poorly understood how and to what extent QQ systems can affect the microbial aggregation processes and the following floc formation. In particular, an in-depth structural characterization at the scale of microbial aggregate while considering nutrient conditions in the reactor is still largely disregarded. Here, we evaluated the QQ effects at the short-term time scale (i.e., after 4 h for the exogenous period and 19 h for exogenous/endogenous period), by combining advanced techniques for microbial characterization (flow cytometry, CARD-FISH, and confocal laser scanning microscopy) and conventional physical-chemical assessments. The results indicated that by implementing QQ agents (immobilized Acylase I enzyme in porous alginate beads) the abundance of single cells and suspended microbial aggregates in the supernatant did not show significant changes during the exogenous period. Conversely, at the end of the exogenous/endogenous period a significant increase of single prokaryotic cells, small and large microbial aggregates favored the growth of grazers, including free-living nanoflagellates and ciliates. Flocs became looser and thinner than those in the control reactor, thus affecting the sludge settling behavior. Inability of microbial community in degradation of soluble protein during the endogenous period confirmed that the QQ agents are likely to inhibit the secretion of protease enzyme within microbial communities of activated sludge.


Assuntos
Percepção de Quorum/fisiologia , Eliminação de Resíduos Líquidos/métodos , Incrustação Biológica , Reatores Biológicos , Enzimas Imobilizadas , Nutrientes , Esgotos , Águas Residuárias
3.
J Environ Health Sci Eng ; 17(2): 645-656, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32030140

RESUMO

PURPOSE: Biofiltration is one of the most accepted technologies in odor control in wastewater facilities. A biofilter system consists of a bed of organic material providing both as the carrier for the active microorganisms and as nutrient supply. This study was aimed to evaluate and model a biofilter performance operated under real conditions of odor emission from a wastewater pump station located in Khorramabad, Iran. METHODS: The media was a mixture of compost and wood chips with a weight ratio of 5:1. The treatment performance of the biofilter was assessed during a 90-day operation period and the gathered data were utilized to develop and determine the best fit kinetic model based on Michaelis-Menten and Ottengraf models. The best fit model was used in the analysis of scenarios defined based on inlet H2S loading fluctuations. Also, the effectiveness of the main parameters in biofilter performance was evaluated using a dimensionless sensitivity coefficient. RESULTS: The best fit model was found the Ottengraf zero-order type limited by diffusion based on the values of R-square (0.98) and mean square error (MSE) (0.002). The results demonstrated a high H2S removal efficiency of about 98% in an EBRT (empty bed residence time) of 60 s. despite high fluctuations of inlet concentration under real conditions. The system was able to meet the effluent standard limit of 10 ppm even if the inlet H2S loading increases up to two times the base level. According to the results of the defined sensitivity coefficient, the system performance was more sensitive to the inlet concentration than EBRT with a ratio of 1.4. CONCLUSIONS: In addition to the acceptable efficiencies of biofilter in odor removal, the results proved the worth of using a kinetic model in forecasting the system performance which is a useful tool in the design and operation of such systems.

4.
Chemosphere ; 209: 525-533, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29945045

RESUMO

The Quorum Sensing (QS) system has attracted the interest of researchers as a cell-cell communication system. In activated sludge processes, the production of extracellular polymeric substances (EPS), biofilms and floc formation are regulated by the QS system. Hence, disruption of the QS system, called Quorum Quenching (QQ), could have a significant effect on the quality and quantity of excess sludge. In the present research, the quorum quenching bacteria, Rhodococcus sp. BH4 was used as a quorum quencher and was entrapped in an alginate structure (QQ beads). Three separate sequential batch reactors (SBR) were constructed and operated as a control reactor, a Low-QQ reactor (containing 150 QQ beads), and a High-QQ reactor (containing 600 QQ beads). Results indicated that the presence of QQ beads in the aeration reactor leads to a decrease in EPS content and mean floc particle size in the both Low-QQ and High-QQ reactors. The eukaryotic community was changed significantly so that the QS disruption caused an enhancement in microbial predation. The presence of QQ beads also led to a 16 and a 26% decrease in the Yobs coefficient within the Low-QQ and High-QQ reactors, respectively. Findings of this research revealed a new application of the QQ system in the activated sludge process, but additional studies are needed.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Percepção de Quorum/fisiologia , Rhodococcus/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA