Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 131004, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613261

RESUMO

We present first results from a dark photon dark matter search in the mass range from 44 to 52 µeV (10.7-12.5 GHz) using a room-temperature dish antenna setup called GigaBREAD. Dark photon dark matter converts to ordinary photons on a cylindrical metallic emission surface with area 0.5 m^{2} and is focused by a novel parabolic reflector onto a horn antenna. Signals are read out with a low-noise receiver system. A first data taking run with 24 days of data does not show evidence for dark photon dark matter in this mass range, excluding dark photon photon mixing parameters χ≳10^{-12} in this range at 90% confidence level. This surpasses existing constraints by about 2 orders of magnitude and is the most stringent bound on dark photons in this range below 49 µeV.

2.
Phys Rev Lett ; 127(8): 081801, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477408

RESUMO

Two of the most pressing questions in physics are the microscopic nature of the dark matter that comprises 84% of the mass in the Universe and the absence of a neutron electric dipole moment. These questions would be resolved by the existence of a hypothetical particle known as the quantum chromodynamics (QCD) axion. In this work, we probe the hypothesis that axions constitute dark matter, using the ABRACADABRA-10 cm experiment in a broadband configuration, with world-leading sensitivity. We find no significant evidence for axions, and we present 95% upper limits on the axion-photon coupling down to the world-leading level g_{aγγ}<3.2×10^{-11} GeV^{-1}, representing one of the most sensitive searches for axions in the 0.41-8.27 neV mass range. Our work paves a direct path for future experiments capable of confirming or excluding the hypothesis that dark matter is a QCD axion in the mass range motivated by string theory and grand unified theories.

3.
Phys Rev Lett ; 122(12): 121802, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978106

RESUMO

The axion is a promising dark matter candidate, which was originally proposed to solve the strong-CP problem in particle physics. To date, the available parameter space for axion and axionlike particle dark matter is relatively unexplored, particularly at masses m_{a}≲1 µeV. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, 10^{-12}≲m_{a}≲10^{-6} eV. ABRACADABRA-10 cm is a small-scale prototype for a future detector that could be sensitive to the QCD axion. In this Letter, we present the first results from a 1 month search for axions with ABRACADABRA-10 cm. We find no evidence for axionlike cosmic dark matter and set 95% C.L. upper limits on the axion-photon coupling between g_{aγγ}<1.4×10^{-10} and g_{aγγ}<3.3×10^{-9} GeV^{-1} over the mass range 3.1×10^{-10}-8.3×10^{-9} eV. These results are competitive with the most stringent astrophysical constraints in this mass range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...