Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 288: 102341, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359963

RESUMO

We report here an overview of current trends and a selection of recent results regarding the characterization of emulsions by Diffusing Wave Spectroscopy (DWS). We provide a synopsis of the state of the art of the DWS technique, and a critical discussion of experiments performed on samples in which Brownian and ballistic dynamics coexist. A novel analysis scheme is introduced for DWS experiments on creaming or sedimenting emulsions, allowing to extract not only average values for drop size and drop dynamics - as usual in DWS - but also properties related to the width of the distributions governing these quantities. This analysis scheme starts from a realistic Monte Carlo simulation of light diffusing in the volume of the sample and reaching the detector. This simulation is more accurate than the analytical expressions available for the idealized geometries normally used in DWS interpretation. By disentangling Brownian and ballistic motions we directly access the variance of velocity distribution, σv. In relatively unstable emulsions σv governs the frequency of drop-drop collisions and subsequent coalescence events. Furthermore, when gravity dominates dynamics, as in emulsions subject to sedimentation or creaming, σv is strongly related to the 2nd and 4th moments of drop size distribution. This novel analysis scheme is exemplified investigating freshly formed model emulsions. Results are validated by comparison with microscopy imaging. This analysis is then extended to emulsions with a much broader drop size distribution, resembling those that are planned to be investigated in microgravity by the Soft Matter Dynamics facility onboard the International Space Station (ISS). This review is concluded by sketching some promising directions, and suggesting useful complementarities between DWS and other techniques, for the characterization of transient regimes in emulsions, and of destabilization processes of great practical importance.

2.
PLoS One ; 14(8): e0216012, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412033

RESUMO

This work aims at investigating the interactions between the flow of fluids in the eyes and the brain and their potential implications in structural and functional changes in the eyes of astronauts, a condition also known as spaceflight associated neuro-ocular syndrome (SANS). To this end, we propose a reduced (0-dimensional) mathematical model of fluid flow in the eyes and brain, which is embedded into a simplified whole-body circulation model. In particular, the model accounts for: (i) the flows of blood and aqueous humor in the eyes; (ii) the flows of blood, cerebrospinal fluid and interstitial fluid in the brain; and (iii) their interactions. The model is used to simulate variations in intraocular pressure, intracranial pressure and blood flow due to microgravity conditions, which are thought to be critical factors in SANS. Specifically, the model predicts that both intracranial and intraocular pressures increase in microgravity, even though their respective trends may be different. In such conditions, ocular blood flow is predicted to decrease in the choroid and ciliary body circulations, whereas retinal circulation is found to be less susceptible to microgravity-induced alterations, owing to a purely mechanical component in perfusion control associated with the venous segments. These findings indicate that the particular anatomical architecture of venous drainage in the retina may be one of the reasons why most of the SANS alterations are not observed in the retina but, rather, in other vascular beds, particularly the choroid. Thus, clinical assessment of ocular venous function may be considered as a determinant SANS factor, for which astronauts could be screened on earth and in-flight.


Assuntos
Astronautas , Encéfalo/fisiopatologia , Olho/fisiopatologia , Modelos Biológicos , Simulação de Ausência de Peso , Ausência de Peso , Hemodinâmica , Humanos , Pressão Intracraniana , Pressão Intraocular , Voo Espacial , Visão Ocular
3.
Langmuir ; 34(21): 5978-5989, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29718671

RESUMO

The control of the behavior of oil in water emulsions requires deeper investigations on the adsorption properties of the emulsion stabilizers at the interfaces, which are fundamental to explain the (de)stabilization mechanisms. In this work, we present an extensive study on oil-in-water emulsions stabilized by sodium dodecyl sulfate (SDS) below its critical micellar concentration. Dynamic tensiometry, dilational rheology, and electrical conductivity measurements are used to investigate the adsorption properties at the droplet interface, whereas the aging of the respective emulsions was investigated by monitoring the macroscopic thickness of the emulsion layer, by microimaging and dynamic light scattering (DLS) analysis, to get information on the drop size distribution. In addition, the droplet coalescence is investigated by a microscopy setup. The results of this multitechnique study allow deriving a coherent scenario where the adsorption properties of this ionic surfactant relate to those of the emulsion, such as, for example, the prevention of droplet coalescence and the presence of other mechanisms, such as Ostwald ripening, responsible for the emulsion aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...