Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NeuroImmune Pharm Ther ; 2(1): 49-62, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027342

RESUMO

Objectives: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory autoimmune disease characterized by high levels of infected immortalized T cells in circulation, which makes it difficult for antiretroviral (ART) drugs to work effectively. In previous studies, we established that Apigenin, a flavonoid, can exert immunomodulatory effects to reduce neuroinflammation. Flavonoids are natural ligands for the aryl hydrocarbon receptor (AhR), which is a ligand activated endogenous receptor involved in the xenobiotic response. Consequently, we tested Apigenin's synergy in combination with ART against the survival of HTLV-1-infected cells. Methods: First, we established a direct protein-protein interaction between Apigenin and AhR. We then demonstrated that Apigenin and its derivative VY-3-68 enter activated T cells, drive nuclear shuttling of AhR, and modulate its signaling both at RNA and protein level. Results: In HTLV-1 producing cells with high AhR expression, Apigenin cooperates with ARTs such as Lopinavir (LPN) and Zidovudine (AZT), to impart cytotoxicity by exhibiting a major shift in IC50 that was reversed upon AhR knockdown. Mechanistically, Apigenin treatment led to an overall downregulation of NF-κB and several other pro-cancer genes involved in survival. Conclusions: This study suggest the potential combinatorial use of Apigenin with current first-line antiretrovirals for the benefit of patients affected by HTLV-1 associated pathologies.

2.
Haematologica ; 107(12): 2928-2943, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35615924

RESUMO

Adult T-cell leukemia and lymphoma (ATLL) is an intractable T-cell neoplasia caused by a retrovirus, namely human T-cell leukemia virus type 1 (HTLV-1). Patients suffering from ATLL present a poor prognosis and have a dearth of treatment options. In contrast to the sporadic expression of viral transactivator protein Tax present at the 5' promoter region long terminal repeats (LTR), HTLV-1 bZIP gene (HBZ) is encoded by 3'LTR (the antisense promoter) and maintains its constant expression in ATLL cells and patients. The antisense promoter is associated with selective retroviral gene expression and has been an understudied phenomenon. Herein, we delineate the activity of transcription factor MEF (myocyte enhancer factor)-2 family members, which were found to be enriched at the 3'LTR and play an important role in the pathogenesis of ATLL. Of the four MEF isoforms (A to D), MEF-2A and 2C were highly overexpressed in a wide array of ATLL cell lines and in acute ATLL patients. The activity of MEF-2 isoforms were determined by knockdown experiments that led to decreased cell proliferation and regulated cell cycle progression. High enrichment of MEF-2C was observed at the 3'LTR along with cofactors Menin and JunD resulting in binding of MEF-2C to HBZ at this region. Chemical inhibition of MEF-2 proteins resulted in the cytotoxicity of ATLL cells in vitro and reduction of proviral load in a humanized mouse model. Taken together, this study provides a novel mechanism of 3'LTR regulation and establishes MEF-2 signaling a potential target for therapeutic intervention for ATLL.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Linfoma , Animais , Humanos , Camundongos , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , Linfoma/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Regiões Promotoras Genéticas , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
PLoS One ; 17(3): e0265403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333902

RESUMO

Directed cell migration arises from cells following a microenvironmental gradient (e.g. of a chemokine) or polarizing feature (e.g. a linear structure). However cells not only follow, but in many cases, also generate directionality cues by modifying their microenvironment. This bi-directional relationship is seen in the alignment of extracellular matrix (ECM) fibers ahead of invading cell masses. The forces generated by many migrating cells cause fiber alignment, which in turn promotes further migration in the direction of fiber alignment via contact guidance and durotaxis. While this positive-feedback relationship has been widely described for cells invading en masse, single cells are also able to align ECM fibers, as well as respond to contact guidance and durotaxis cues, and should therefore exhibit the same relationship. In this study, we directly tested this hypothesis by studying the migration persistence of individual HT-1080 fibrosarcoma cells migrating in photocrosslinked collagen matrices with limited remodeling potential. Our results demonstrate that this positive-feedback relationship is indeed a fundamental aspect of cell migration in fibrillar environments. We observed that the cells' inability to align and condense fibers resulted in a decrease in persistence relative to cells in native collagen matrices and even relative to isotropic (glass) substrates. Further experiments involving 2D collagen and electrospun polymer scaffolds suggest that substrates composed of rigid, randomly oriented fibers reduce cells' ability to follow another directionality cue by forcing them to meander to follow the available adhesive area (i.e. fibers). Finally, our results demonstrate that the bi-directional relationship between cell remodeling and migration is not a "dimensionality" effect, but a fundamental effect of fibrous substrate structure.


Assuntos
Comunicação Celular , Sinais (Psicologia) , Movimento Celular , Colágeno/química , Matriz Extracelular
4.
Cancers (Basel) ; 13(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34680208

RESUMO

The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.

5.
Orphanet J Rare Dis ; 14(1): 162, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272455

RESUMO

BACKGROUND: Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by oculocutaneous albinism and platelet dysfunction and can sometimes lead to a highly aggressive form of pulmonary fibrosis that mimics the fatal lung condition called idiopathic pulmonary fibrosis (IPF). Although the activities of various matrix metalloproteinases (MMPs) are known to be dysregulated in IPF, it remains to be determined whether similar changes in these enzymes can be detected in HPS. RESULTS: Here, we show that transcript and protein levels as well as enzymatic activities of MMP-2 and -9 are markedly increased in the lungs of mice carrying the HPS Ap3b1 gene mutation. Moreover, immunohistochemical staining localized this increase in MMP expression to the distal pulmonary epithelium, and shRNA knockdown of the Ap3b1 gene in cultured lung epithelial cells resulted in a similar upregulation in MMP-2 and -9 expression. Mechanistically, we found that upregulation in MMP expression associated with increased activity of the serine/threonine kinase Akt, and pharmacological inhibition of this enzyme resulted in a dramatic suppression of MMP expression in Ap3b1 deficient lung epithelial cells. Similarly, levels and activity of different MMPs were also found to be increased in the lungs of mice carrying the Bloc3 HPS gene mutation and in the bronchoalveolar lavage fluid of subjects with HPS. However, an association between MMP activity and disease severity was not detected in these individuals. CONCLUSIONS: In summary, our findings indicate that MMP activity is dysregulated in the HPS lung, suggesting a role for these proteases as biological markers or pathogenic players in HPS lung disease.


Assuntos
Síndrome de Hermanski-Pudlak/metabolismo , Pulmão/metabolismo , Metaloproteinases da Matriz/metabolismo , Animais , Western Blotting , Linhagem Celular , Síndrome de Hermanski-Pudlak/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Camundongos
6.
Alcohol ; 80: 73-79, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31229291

RESUMO

Chronic alcohol consumption renders the lung more susceptible to infections by disrupting essential alveolar macrophage functions. Emerging evidence suggests that these functional deficits are due, in part, to a suppression of GM-CSF signaling, which is believed to compromise monocyte growth and maturation in the lung. However, in addition to controlling monocyte behaviors, GM-CSF also regulates surfactant homeostasis. For example, mice with targeted deletion of the gene for GM-CSF accumulate large amounts of surfactant phospholipids in their lungs. Moreover, decreased GM-CSF signaling in humans has been linked to the development of pulmonary alveolar proteinosis (PAP), a rare disorder in which surfactant lipids and proteins accumulate in alveolar macrophages and the lung exhibits enhanced susceptibility to infection. Consistent with parallel mechanisms in the PAP and alcoholic lung, we have recently reported that levels of intrapulmonary lipids, specifically triglycerides and free fatty acids, are increased in BAL fluid, whole lung digests and alveolar macrophages of chronically alcohol exposed rats. Additionally, we showed that uptake of saturated fatty acids alone could induce phenotypic and functional changes in alveolar macrophages that mimicked those in the alcohol-exposed rat and human lung. Herein, we discuss the role of GM-CSF in surfactant homeostasis and highlight the evidence that links decreased GM-CSF signaling to alveolar macrophage dysfunction in both the PAP and alcohol-exposed lung. Moreover, we discuss how lipid accumulation itself might contribute to altering alveolar macrophage function and propose how targeting these mechanisms could be employed for reducing the susceptibility to pulmonary infections in alcoholics.


Assuntos
Alcoolismo/complicações , Fator Estimulador de Colônias de Granulócitos e Macrófagos/deficiência , Pulmão/patologia , Proteinose Alveolar Pulmonar/etiologia , Alcoolismo/patologia , Animais , Homeostase , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/patologia , Proteinose Alveolar Pulmonar/patologia , Surfactantes Pulmonares/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1049-L1060, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892080

RESUMO

Cellular senescence is a biological process by which cells lose their capacity to proliferate yet remain metabolically active. Although originally considered a protective mechanism to limit the formation of cancer, it is now appreciated that cellular senescence also contributes to the development of disease, including common respiratory ailments such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. While many factors have been linked to the development of cellular senescence, mitochondrial dysfunction has emerged as an important causative factor. In this study, we uncovered that the mitochondrial biogenesis pathway driven by the mammalian target of rapamycin/peroxisome proliferator-activated receptor-γ complex 1α/ß (mTOR/PGC-1α/ß) axis is markedly upregulated in senescent lung epithelial cells. Using two different models, we show that activation of this pathway is associated with other features characteristic of enhanced mitochondrial biogenesis, including elevated number of mitochondrion per cell, increased oxidative phosphorylation, and augmented mitochondrial reactive oxygen species (ROS) production. Furthermore, we found that pharmacological inhibition of the mTORC1 complex with rapamycin not only restored mitochondrial homeostasis but also reduced cellular senescence to bleomycin in lung epithelial cells. Likewise, mitochondrial-specific antioxidant therapy also effectively inhibited mTORC1 activation in these cells while concomitantly reducing mitochondrial biogenesis and cellular senescence. In summary, this study provides a mechanistic link between mitochondrial biogenesis and cellular senescence in lung epithelium and suggests that strategies aimed at blocking the mTORC1/PGC-1α/ß axis or reducing ROS-induced molecular damage could be effective in the treatment of senescence-associated lung diseases.


Assuntos
Senescência Celular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mucosa Respiratória/metabolismo , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Bleomicina/farmacologia , Linhagem Celular , Fibrose Pulmonar Idiopática/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Estresse Oxidativo/fisiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/citologia , Sirolimo/farmacologia
8.
Exp Cell Res ; 375(2): 1-9, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641040

RESUMO

We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) on control and TGF-ß1-exposed rat lung fibroblasts to identify proteins differentially expressed between cell populations. A total of 196 proteins were found to be differentially expressed in response to TGF-ß1 treatment. Guided by these results, we next determined whether similar changes in protein expression were detectable in the rat lung after chronic exposure to silica dust. Of the five proteins selected for further analysis, we found that levels of all proteins were markedly increased in the silica-exposed rat lung, including the proteins for the very low density lipoprotein receptor (VLDLR) and the transmembrane (type I) heparin sulfate proteoglycan called syndecan 2 (SDC2). Because VLDLR and SDC2 have not, to our knowledge, been previously linked to the pathobiology of silicosis, we next examined whether knockdown of either gene altered responses to TGF-ß1 in MRC-5 lung fibroblasts. Interestingly, we found knockdown of either VLDLR or SDC2 dramatically reduced collagen production to TGF-ß1, suggesting that both proteins might play a novel role in myofibroblast biology and pathogenesis of silica-induced pulmonary fibrosis. In summary, our findings suggest that performing LC-MS/MS on TGF-ß1 stimulated lung fibroblasts can uncover novel molecular targets of activated myofibroblasts in silica-exposed lung.


Assuntos
Fibroblastos/metabolismo , Silicose/genética , Transcriptoma , Fator de Crescimento Transformador beta/farmacologia , Animais , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptores de LDL/genética , Receptores de LDL/metabolismo , Silicose/metabolismo , Sindecana-2/genética , Sindecana-2/metabolismo
9.
Sci Rep ; 7(1): 14380, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085052

RESUMO

Contact guidance-cell polarization by anisotropic substrate features-is integral to numerous physiological processes; however the complexities of its regulation are only beginning to be discovered. In particular, cells polarize to anisotropic features under non-muscle myosin II (MII) inhibition, despite MII ordinarily being essential for polarized cell migration. Here, we investigate the ability of cells to sense and respond to fiber alignment in the absence of MII activity. We find that contact guidance is determined at the level of individual protrusions, which are individually guided by local fiber orientation, independent of MII. Protrusion stability and persistence are functions of adhesion lifetime, which depends on fiber orientation. Under MII inhibition, adhesion lifetime no longer depends on fiber orientation; however the ability of protrusions to form closely spaced adhesions sequentially without having to skip over gaps in adhesive area, biases protrusion formation along fibers. The co-alignment of multiple protrusions polarizes the entire cell; if the fibers are not aligned, contact guidance of individual protrusions still occurs, but does not produce overall cell polarization. These results describe how aligned features polarize a cell independently of MII and demonstrate how cellular contact guidance is built on the local alignment of adhesions and individual protrusions.


Assuntos
Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Miosina Tipo II/metabolismo , Actinas/metabolismo , Anisotropia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Humanos , Miosina Tipo II/fisiologia , Miosinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...