Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36986686

RESUMO

Dendritic cells (DCs) are the most specialized and proficient antigen-presenting cells. They bridge innate and adaptive immunity and display a powerful capacity to prime antigen-specific T cells. The interaction of DCs with the receptor-binding domain of the spike (S) protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pivotal step to induce effective immunity against the S protein-based vaccination protocols, as well as the SARS-CoV-2 virus. Herein, we describe the cellular and molecular events triggered by virus-like particles (VLPs) containing the receptor-binding motif from the SARS-CoV-2 spike protein in human monocyte-derived dendritic cells, or, as controls, in the presence of the Toll-like receptors (TLR)3 and TLR7/8 agonists, comprehending the events of dendritic cell maturation and their crosstalk with T cells. The results demonstrated that VLPs boosted the expression of major histocompatibility complex molecules and co-stimulatory receptors of DCs, indicating their maturation. Furthermore, DCs' interaction with VLPs promoted the activation of the NF-kB pathway, a very important intracellular signalling pathway responsible for triggering the expression and secretion of proinflammatory cytokines. Additionally, co-culture of DCs with T cells triggered CD4+ (mainly CD4+Tbet+) and CD8+ T cell proliferation. Our results suggested that VLPs increase cellular immunity, involving DC maturation and T cell polarization towards a type 1 T cells profile. By providing deeper insight into the mechanisms of activation and regulation of the immune system by DCs, these findings will enable the design of effective vaccines against SARS-CoV-2.

2.
Bioengineering (Basel) ; 10(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829672

RESUMO

Innovative point-of-care (PoC) diagnostic platforms are desirable to surpass the deficiencies of conventional laboratory diagnostic methods for bacterial infections and to tackle the growing antimicrobial resistance crisis. In this study, a workflow was implemented, comprising the identification of new aptamers with high affinity for the ubiquitous surface protein A2 (UspA2) of the bacterial pathogen Moraxella catarrhalis and the development of an electrochemical biosensor functionalized with the best-performing aptamer as a bioreceptor to detect UspA2. After cell-systematic evolution of ligands by exponential enrichment (cell-SELEX) was performed, next-generation sequencing was used to sequence the final aptamer pool. The most frequent aptamer sequences were further evaluated using bioinformatic tools. The two most promising aptamer candidates, Apt1 and Apt1_RC (Apt1 reverse complement), had Kd values of 214.4 and 3.4 nM, respectively. Finally, a simple and label-free electrochemical biosensor was functionalized with Apt1_RC. The aptasensor surface modifications were confirmed by impedance spectroscopy and cyclic voltammetry. The ability to detect UspA2 was evaluated by square wave voltammetry, exhibiting a linear detection range of 4.0 × 104-7.0 × 107 CFU mL-1, a square correlation coefficient superior to 0.99 and a limit of detection of 4.0 × 104 CFU mL-1 at pH 5.0. The workflow described has the potential to be part of a sensitive PoC diagnostic platform to detect and quantify M. catarrhalis from biological samples.

3.
Biosensors (Basel) ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36005012

RESUMO

New point-of-care (POC) diagnosis of bacterial infections are imperative to overcome the deficiencies of conventional methods, such as culture and molecular methods. In this study, we identified new aptamers that bind to the virulence factor Yersinia adhesin A (YadA) of Yersinia enterocolitica using cell-systematic evolution of ligands by exponential enrichment (cell-SELEX). Escherichia coli expressing YadA on the cell surface was used as a target cell. After eight cycles of selection, the final aptamer pool was sequenced by high throughput sequencing using the Illumina Novaseq platform. The sequencing data, analyzed using the Geneious software, was aligned, filtered and demultiplexed to obtain the key nucleotides possibly involved in the target binding. The most promising aptamer candidate, Apt1, bound specifically to YadA with a dissociation constant (Kd) of 11 nM. Apt1 was used to develop a simple electrochemical biosensor with a two-step, label-free design towards the detection of YadA. The sensor surface modifications and its ability to bind successfully and stably to YadA were confirmed by cyclic voltammetry, impedance spectroscopy and square wave voltammetry. The biosensor enabled the detection of YadA in a linear range between 7.0 × 104 and 7.0 × 107 CFU mL−1 and showed a square correlation coefficient >0.99. The standard deviation and the limit of detection was ~2.5% and 7.0 × 104 CFU mL−1, respectively. Overall, the results suggest that this novel biosensor incorporating Apt1 can potentially be used as a sensitive POC detection system to aid the diagnosis of Y. enterocolitica infections. Furthermore, this simple yet innovative approach could be replicated to select aptamers for other (bacterial) targets and to develop the corresponding biosensors for their detection.


Assuntos
Técnicas Biossensoriais , Yersinia enterocolitica , Espectroscopia Dielétrica , Fatores de Virulência/metabolismo , Yersinia enterocolitica/metabolismo
4.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35590912

RESUMO

Cancer is a major cause of mortality and morbidity worldwide. Detection and quantification of cancer biomarkers plays a critical role in cancer early diagnosis, screening, and treatment. Clinicians, particularly in developing countries, deal with high costs and limited resources for diagnostic systems. Using low-cost substrates to develop sensor devices could be very helpful. The interest in paper-based sensors with colorimetric detection increased exponentially in the last decade as they meet the criteria for point-of-care (PoC) devices. Cellulose and different nanomaterials have been used as substrate and colorimetric probes, respectively, for these types of devices in their different designs as spot tests, lateral-flow assays, dipsticks, and microfluidic paper-based devices (µPADs), offering low-cost and disposable devices. However, the main challenge with these devices is their low sensitivity and lack of efficiency in performing quantitative measurements. This review includes an overview of the use of paper for the development of sensing devices focusing on colorimetric detection and their application to cancer biomarkers. We highlight recent works reporting the use of paper in the development of colorimetric sensors for cancer biomarkers, such as proteins, nucleic acids, and others. Finally, we discuss the main advantages of these types of devices and highlight their major pitfalls.


Assuntos
Técnicas Analíticas Microfluídicas , Neoplasias , Biomarcadores , Biomarcadores Tumorais , Colorimetria , Dispositivos Lab-On-A-Chip , Neoplasias/diagnóstico , Papel , Sistemas Automatizados de Assistência Junto ao Leito
5.
Curr Med Chem ; 29(37): 5850-5880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35209816

RESUMO

An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Humanos , Neoplasias/diagnóstico , Técnica de Seleção de Aptâmeros/métodos
6.
Sensors (Basel) ; 21(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502675

RESUMO

Optical biosensors are used in numerous applications and analytical fields. Advances in these sensor platforms offer high sensitivity, selectivity, miniaturization, and real-time analysis, among many other advantages. Research into bioactive natural products serves both to protect against potentially dangerous toxic compounds and to promote pharmacological innovation in drug discovery, as these compounds have unique chemical compositions that may be characterized by greater safety and efficacy. However, conventional methods for detecting these biomolecules have drawbacks, as they are time-consuming and expensive. As an alternative, optical biosensors offer a faster, simpler, and less expensive means of detecting various biomolecules of clinical interest. In this review, an overview of recent developments in optical biosensors for the detection and monitoring of aquatic biotoxins to prevent public health risks is first provided. In addition, the advantages and applicability of these biosensors in the field of drug discovery, including high-throughput screening, are discussed. The contribution of the investigated technological advances in the timely and sensitive detection of biotoxins while deciphering the pathways to discover bioactive compounds with great health-promoting prospects is envisaged to meet the increasing demands of healthcare systems.


Assuntos
Técnicas Biossensoriais
7.
Anal Chem ; 93(22): 7815-7824, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038085

RESUMO

In this work, we describe an innovative methodology based on combined surface plasmon resonance (SPR) and electrochemical responses (eSPR) in the same immunoassay for screening CA 15-3 cancer biomarker with high sensitivity (and selectivity), in a very simple, label-free, accurate, and fully automated manner. Detection was achieved by performing two simple steps. In the first step, direct SPR was used to monitor CA 15-3 interaction with surface immobilized antibody. Two linear response ranges were obtained and the detection limit achieved is poor (LOD of 21 U mL-1). However, in the second detection step, electrochemical measurements at the SPR gold surface were performed to measure the decrease of redox probe peak current upon antigen-antibody interaction, providing a suitable amplification strategy to lower detection levels of CA 15-3 (LOD of 0.0998 U mL-1), without the need of additional complex and/or expensive amplification steps to enhance the sensitivity. Moreover, selectivity studies were performed against other common cancer biomarkers and the results showed that the eSPR immunosensor is selective for the CA 15-3 protein. Finally, the clinical applicability of the developed eSPR biosensing methodology was successfully applied to detect CA 15-3 in human serum samples at clinically relevant levels due to the high sensitivity of electrochemical readout. The same concept may be further extended to other proteins of interest.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Eletroquímica , Ouro , Humanos , Imunoensaio , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...