Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871076

RESUMO

The clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) technology is a versatile and useful tool to perform genome editing in different organisms ranging from bacteria and yeast to plants and mammalian cells. For a couple of years, it was believed that the system was inefficient and toxic in the alga Chlamydomonas reinhardtii. However, recently the system has been successfully implemented in this model organism, albeit relying mostly on the electroporation of ribonucleoproteins (RNPs) into cell wall deficient strains. This requires a constant source of RNPs and limits the application of the technology to strains that are not necessarily the most relevant from a biotechnological point of view. Here, we show that transient expression of the Streptococcus pyogenes Cas9 gene and sgRNAs, targeted to the single-copy nuclear apt9 gene, encoding an adenine phosphoribosyl transferase (APT), results in efficient disruption at the expected locus. Introduction of indels to the apt9 locus results in cell insensitivity to the otherwise toxic compound 2-fluoroadenine (2-FA). We have used agitation with glass beads and particle bombardment to introduce the plasmids carrying the coding sequences for Cas9 and the sgRNAs in a cell-walled strain of C. reinhardtii (CC-125). Using sgRNAs targeting exons 1 and 3 of apt9, we obtained disruption efficiencies of 3 and 30% on preselected 2-FA resistant colonies, respectively. Our results show that transient expression of Cas9 and a sgRNA can be used for editing of the nuclear genome inexpensively and at high efficiency. Targeting of the APT gene could potentially be used as a pre-selection marker for multiplexed editing or disruption of genes of interest.


Assuntos
Adenina Fosforribosiltransferase/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Chlamydomonas reinhardtii/genética , Genes Reporter/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Eletroporação/métodos , Edição de Genes/métodos , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , Ribonucleoproteínas/genética
2.
AMB Express ; 4: 57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136510

RESUMO

Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals.

3.
Appl Biochem Biotechnol ; 166(7): 1644-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22350935

RESUMO

In the latest two decades, the interest received by plant enzymes has increased significantly. Plant enzymes such as peroxidases are widely used in medicine as diagnostic tools and in the bioremediation and biobleaching industries, among others. Traditionally, these enzymes have been obtained from a natural source, a process that is sometimes laborious and affected by weather conditions and low yields. To overcome this hurdle, some efforts have been made to establish plant cell cultures in vitro to use the system as a continuous source of plant enzymes. The focus of this review will be the production of plant peroxidases in vitro, including novel approaches such as the use of bioreactors and genetically transformed tissues to enhance the yield of desired enzymes.


Assuntos
Peroxidases/biossíntese , Proteínas de Plantas/biossíntese , Plantas/enzimologia , Biodegradação Ambiental , Reatores Biológicos , Técnicas de Cultura de Células , Células Vegetais/enzimologia , Raízes de Plantas/enzimologia , Plantas/genética , Plantas Geneticamente Modificadas , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...